《2019-2020年高考數(shù)學專題復習導練測 第二章 第3講 函數(shù)的奇偶性與周期性 理 新人教A版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學專題復習導練測 第二章 第3講 函數(shù)的奇偶性與周期性 理 新人教A版.doc(5頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數(shù)學專題復習導練測 第二章 第3講 函數(shù)的奇偶性與周期性 理 新人教A版
一、選擇題
1.設f(x)為定義在R上的奇函數(shù).當x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)等于( ).
A.3 B.1 C.-1 D.-3
解析 由f(-0)=-f(0),即f(0)=0.則b=-1,
f(x)=2x+2x-1,f(-1)=-f(1)=-3.
答案 D
2.已知定義在R上的奇函數(shù),f(x)滿足f(x+2)=-f(x),則f(6)的值為 ( ).
A.-1 B.0 C.1 D.2
解析 (構造法)構造函數(shù)f(x)=sin x,則有f(x+2)=sin=-sin x=-f(x),所以f(x)=sin x是一個滿足條件的函數(shù),所以f(6)=sin 3π=0,故選B.
答案 B
3.定義在R上的函數(shù)f(x)滿足f(x)=f(x+2),當x∈[3,5]時,f(x)=2-|x-4|,則下列不等式一定成立的是 ( ).
A.f>f B.f(sin 1)
f(sin 2)
解析 當x∈[-1,1]時,x+4∈[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,
顯然當x∈[-1,0]時,f(x)為增函數(shù);當x∈[0,1]時,f(x)為減函數(shù),cos=-,sin =>,又f=f>f,所以f>f.
答案 A
4.已知函數(shù)f(x)=則該函數(shù)是 ( ).
A.偶函數(shù),且單調遞增 B.偶函數(shù),且單調遞減
C.奇函數(shù),且單調遞增 D.奇函數(shù),且單調遞減
解析 當x>0時,f(-x)=2-x-1=-f(x);當x<0時,f(-x)=1-2-(-x)=1-2x=-f(x).當x=0時,f(0)=0,故f(x)為奇函數(shù),且f(x)=1-2-x在[0,+∞)上為增函數(shù),f(x)=2x-1在(-∞,0)上為增函數(shù),又x≥0時1-2-x≥0,x<0時2x-1<0,故f(x)為R上的增函數(shù).
答案 C
5.已知f(x)是定義在R上的周期為2的周期函數(shù),當x∈[0,1)時,f(x)=4x-1,則f(-5.5)的值為( )
A.2 B.-1 C.- D.1
解析 f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.
答案 D
6.設函數(shù)D(x)=則下列結論錯誤的是 ( ).
A.D(x)的值域為{0,1} B.D(x)是偶函數(shù)
C.D(x)不是周期函數(shù) D.D(x)不是單調函數(shù)
解析 顯然D(x)不單調,且D(x)的值域為{0,1},因此選項A、D正確.若x是無理數(shù),-x,x+1是無理數(shù);若x是有理數(shù),-x,x+1也是有理數(shù).∴D(-x)=D(x),D(x+1)=D(x).則D(x)是偶函數(shù),D(x)為周期函數(shù),B正確,C錯誤.
答案 C
二、填空題
7.若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=________.
解析 由題意知,函數(shù)f(x)=x2-|x+a|為偶函數(shù),則f(1)=f(-1),∴1-|1+a|=1-|-1+a|,∴a=0.
答案 0
8.已知y=f(x)+x2是奇函數(shù),且f(1)=1.若g(x)=f(x)+2,則g(-1)=________.
解析 因為y=f(x)+x2是奇函數(shù),且x=1時,y=2,所以當x=-1時,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.
答案 -1
9.設奇函數(shù)f(x)的定義域為[-5,5],當x∈[0,5]時,函數(shù)y=f(x)的圖象如圖所示,則使函數(shù)值y<0的x的取值集合為________.
解析 由原函數(shù)是奇函數(shù),所以y=f(x)在[-5,5]上的圖象關于坐標原點對稱,由y=f(x)在[0,5]上的圖象,得它在[-5,0]上的圖象,如圖所示.由圖象知,使函數(shù)值y<0的x的取值集合為(-2,0)∪(2,5).
答案 (-2,0)∪(2,5)
10. 設f(x)是偶函數(shù),且當x>0時是單調函數(shù),則滿足f(2x)=f的所有x之和為________.
解析 ∵f(x)是偶函數(shù),f(2x)=f,
∴f(|2x|)=f,
又∵f(x)在(0,+∞)上為單調函數(shù),
∴|2x|=,
即2x=或2x=-,
整理得2x2+7x-1=0或2x2+9x+1=0,
設方程2x2+7x-1=0的兩根為x1,x2,方程2x2+9x+1=0的兩根為x3,x4.
則(x1+x2)+(x3+x4)=-+=-8.
答案 -8
三、解答題
11.已知f(x)是定義在R上的不恒為零的函數(shù),且對任意x,y,f(x)都滿足f(xy)=y(tǒng)f(x)+xf(y).
(1)求f(1),f(-1)的值;
(2)判斷函數(shù)f(x)的奇偶性.
解 (1)因為對定義域內任意x,y,f(x)滿足f(xy)=y(tǒng)f(x)+xf(y),所以令x=y(tǒng)=1,得f(1)=0,令x=y(tǒng)=-1,得f(-1)=0.
(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函數(shù).
12.已知函數(shù)f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時,f(x)<0,f(1)=-2.
(1)求證f(x)是奇函數(shù);
(2)求f(x)在[-3,3]上的最大值和最小值.
(1)證明 令x=y(tǒng)=0,知f(0)=0;再令y=-x,
則f(0)=f(x)+f(-x)=0,所以f(x)為奇函數(shù).
(2)解 任取x1<x2,則x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)為減函數(shù).而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.
所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.
13.已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關于x=1對稱,當x∈[0,1]時,f(x)=2x-1,
(1)求證:f(x)是周期函數(shù);
(2)當x∈[1,2]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(xx)的值.
解析 (1)證明 函數(shù)f(x)為奇函數(shù),則f(-x)=-f(x),函數(shù)f(x)的圖象關于x=1對稱,則f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4為周期的周期函數(shù).
(2) 當x∈[1,2]時,2-x∈[0,1],
又f(x)的圖象關于x=1對稱,則f(x)=f(2-x)=22-x-1,x∈[1,2].
(3) ∵f(0)=0,f(1)=1,f(2)=0,
f(3)=f(-1)=-f(1)=-1
又f(x)是以4為周期的周期函數(shù).
∴f(0)+f(1)+f(2)+…+f(xx)
=f(2 012)+f(2 013)=f(0)+f(1)=1.
14.已知函數(shù)f(x)的定義域為R,且滿足f(x+2)=-f(x).
(1)求證:f(x)是周期函數(shù);
(2)若f(x)為奇函數(shù),且當0≤x≤1時,f(x)=x,求使f(x)=-在[0,2 014]上的所有x的個數(shù).
(1)證明 ∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),
∴f(x)是以4為周期的周期函數(shù).
(2)解 當0≤x≤1時,f(x)=x,
設-1≤x≤0,則0≤-x≤1,
∴f(-x)=(-x)=-x.
∵f(x)是奇函數(shù),∴f(-x)=-f(x),
∴-f(x)=-x,即f(x)=x.
故f(x)=x(-1≤x≤1).
又設1
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網址水印。
- 3、該文檔所得收入(下載+內容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
2019-2020年高考數(shù)學專題復習導練測
第二章
第3講
函數(shù)的奇偶性與周期性
新人教A版
2019
2020
年高
數(shù)學
專題
復習
導練測
第二
函數(shù)
奇偶性
周期性
新人
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2832386.html