2019-2020年高考二輪復習專題限時集訓第9講《等差數(shù)列與等比數(shù)列》.doc
《2019-2020年高考二輪復習專題限時集訓第9講《等差數(shù)列與等比數(shù)列》.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考二輪復習專題限時集訓第9講《等差數(shù)列與等比數(shù)列》.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考二輪復習專題限時集訓第9講《等差數(shù)列與等比數(shù)列》 1.若Sn是等差數(shù)列{an}的前n項和,有S8-S3=10,則S11的值為( ) A.22 B.18 C.12 D.44 2.等差數(shù)列{an}滿足a2+a9=a6,則S9=( ) A.-2 B.0 C.1 D.2 3.設等比數(shù)列{an}的公比q=2,前n項和為Sn,則的值為( ) A. B. C. D. 4.等比數(shù)列{an}中,若log2(a2a98)=4,則a40a60等于( ) A.-16 B.10 C.16 D.256 1.已知等差數(shù)列{an}滿足a2=3,Sn-Sn-3=51(n>3),Sn=100,則n的值為( ) A.8 B.9 C.10 D.11 2.在正項等比數(shù)列{an}中,a1和a19為方程x2-10x+16=0的兩根,則a8a10a12等于( ) A.16 B.32 C.64 D.256 3.等比數(shù)列的首項為1,項數(shù)是偶數(shù),所有的奇數(shù)項之和為85,所有的偶數(shù)項之和為170,則這個等比數(shù)列的項數(shù)為( ) A.4 B.6 C.8 D.10 4.若兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn和Tn,已知=,則=( ) A.7 B. C. D. 5.已知等差數(shù)列{an}的前n項和為Sn,若a1+axx+2=0,且A、B、C三點共線(該直線不過原點),則Sxx=( ) A.xx B.xx C.-xx D.-xx 6.在等比數(shù)列{an}中,若a7+a8+a9+a10=,a8a9=-,則+++=________. 7.設{an}是公比為q的等比數(shù)列,其前n項積為Tn,并滿足條件a1>1,a99a100-1>0,<0,給出下列結論: (1)03)=an-2+an-1+an=3an-1,由此得an-1=17,這樣a2+an-1=a1+an=20,使用等差數(shù)列的求和公式Sn=.由100=,解得n=10.本題也可以根據(jù)已知的兩個條件求出等差數(shù)列的首項和公差,再根據(jù)求和公式解n值,但顯然計算上繁瑣,在解答等差數(shù)列、等比數(shù)列的題目時要注意使用其性質,選用合理的公式. 2.C 【解析】 根據(jù)韋達定理a1a19=16,由此得a10=4,a8a12=16,故a8a10a12=64. 3.C 【解析】 設等比數(shù)列項數(shù)為2n項,所有奇數(shù)項之和為S奇,所有偶數(shù)項之和為S偶,則S奇=85,S偶=170,所以q=2,因此=85,解得n=4,故這個等比數(shù)列的項數(shù)為8,選擇C. 4.D 【解析】 根據(jù)等差數(shù)列的性質,=====.如果兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn和Tn,仿照本題解析的方法一定有關系式=. 5.C 【解析】 依題意得a1+axx+2=0,故a1+axx=-2,得Sxx=xx=-xx. 6.- 【解析】 +++=+=+==-. 7.(1)(3)(4) 【解析】 根據(jù)等比數(shù)列的性質,如果等比數(shù)列的公比是負值,其連續(xù)兩項的乘積是負值,根據(jù)a99a100-1>0,可知該等比數(shù)列的公比是正值,再根據(jù)<0可知,a99,a100一個大于1,一個小于1,而a1>1,所以數(shù)列不會是單調遞增的,只能單調遞減,所以01,a100<1,故a99a101=a<1,(1)(3)正確;T198=a1a2…a99a100…a197a198=(a99a100)99>1,(2)不正確;T199=a1a2…a100…a198a199=(a100)199<1,故(4)正確.本題設置開放性的結論,綜合考查等比數(shù)列的性質以及分析問題的能力,試題比較符合高考命題的趨勢.在等比數(shù)列中最主要的性質之一就是aman=apaq?m+n=p+q(m,n,p,q∈N*). 8.【解答】 (1)設數(shù)列{an}的公差為d,{bn}的公比為q,則由題意知 因為數(shù)列{an}各項為正數(shù),所以d>0, 所以把a1=1,b1=1代入方程組解得 所以an=n(n∈N*),bn=2n-1(n∈N*). (2)由(1)知等差數(shù)列{an}的前n項和Sn=na1+d. 所以=a1+(n-1), 所以數(shù)列是首項是1,公差為的等差數(shù)列, 所以Tn=n+=. 9.【解答】 (1)an+1-=4n-3an-=-3an+4n=-3, a1-=1-3k-=-3k. 當k=時,a1-=0,則數(shù)列不是等比數(shù)列; 當k≠時,a1-≠0,則數(shù)列是公比為-3的等比數(shù)列. (2)由(1)可知當k≠時,an-=(-3)n-1,an=(-3)n-1+. 當k=時,an=,也符合上式. 所以數(shù)列{an}的通項公式為an=(-3)n-1+. (3)an+1-an =+(-3)n--(-3)n-1 =-+12(-3)n-1k. 因為{an}為遞增數(shù)列, 所以-+12(-3)n-1k>0恒成立. ①當n為奇數(shù)時,有-+123n-1k>0, 即k>恒成立, 由1-n-1≤1-1-1=0得k>0. ②當n為偶數(shù)時,有+-123n-1k>0, 即k<恒成立, 由1+n-1≥1+2-1=,得k<. 故k的取值范圍是.
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 等差數(shù)列與等比數(shù)列 2019 2020 年高 二輪 復習 專題 限時 集訓 等差數(shù)列 等比數(shù)列
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2834308.html