2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教版.doc
《2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教版.doc(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教版 1.設(shè)集合,則等于( ) A. B. C. D. 2.若復(fù)數(shù)Z,是虛數(shù)單位)是純虛數(shù),則Z的值為( ) A.2 B.3 C. D. 3.下列說(shuō)法正確的是( ) A.命題“使得 ”的否定是:“” B.“”是“在上為增函數(shù)”的充要條件 C.“為真命題”是“為真命題”的必要不充分條件 D.命題p:“”,則p是真命題 4.已知數(shù)列的前項(xiàng)和為,且滿足,,則=( ) A.7 B.12 C.14 D.21 7.直線:與圓M:相切,則的值為 ( ) A.1或-6 B.1或-7 C.-1或7 D.1或 8. 已知函數(shù)(a>0且a≠1)的圖象過(guò)定點(diǎn)P,且點(diǎn)P在直線 mx+ny-1=0(m>0,且n>0)上,則+的最小值是 ( ) A.12 B.16 C.25 D.24 9. 在約束條件下,若目標(biāo)函數(shù)的最大值不超過(guò)4,則實(shí)數(shù)的取值范圍( ) A. B. C. D. 10. 已知,函數(shù)在上單調(diào)遞減.則的取值范圍是( ) A. B. C. D 11.若均為單位向量,, ,則的最大值是( ) A. B. C. D. 12. 設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,則最小值為( ) A. B. C. D. 二、填空題(本大題共4小題,每小題5分,共20分) 13. 在中,分別是內(nèi)角的對(duì)邊,若,的面積為,則的值為 . 14. 已知矩形ABCD中,AB=2,AD=1,E、F分別為BC、CD的中點(diǎn),則 . 15. 把一個(gè)半徑為 cm的金屬球熔成一個(gè)圓錐,使圓錐的側(cè)面積為底面積的3倍,則這個(gè)圓錐的高為 . 16. 函數(shù)的圖象與過(guò)原點(diǎn)的直線有且只有三個(gè)交點(diǎn),設(shè)交點(diǎn)中橫坐標(biāo)的最大值為,則= ___ . 三.解答題(本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟) 17.(本小題滿分10分)已知向量,=,函數(shù). (1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間; (2)當(dāng)x∈時(shí),求函數(shù)f(x)的值域. 18.(本小題滿分12分)已知數(shù)列滿足,其中. (1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式; (2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì) A B C D E 于N*恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由. 19.(本小題滿分12分)設(shè)函數(shù) (1)求函數(shù)的最小值; (2)若恒成立,求實(shí)數(shù)的取值范圍. 20. (本小題滿分12分) 如圖所示,和是 邊長(zhǎng)為2的正三角形,且平面平面, 平面,. (1)證明:; (2)求三棱錐的體積. 21.(本小題滿分12分)己知函數(shù) (1)若是的極值點(diǎn),求在上的最大值; (2)在(1)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)交點(diǎn),若存在,請(qǐng)求出實(shí)數(shù)b的取值范圍;若不存在,試說(shuō)明理由. 22. (本小題滿分12分),則稱為與在上的一個(gè)“分界函數(shù)”.如,則稱一個(gè)“分界函數(shù)”。 (1)求證:是和在上的一個(gè)“分界函數(shù)”; (2)若和在上一定存在一個(gè)“分界函數(shù)”,試確定實(shí)數(shù)的取值范圍。 期中考試(文科)答案 一.選擇題(本大題共12小題,每小題5分,共計(jì)60分) 題號(hào) 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C B C C B B C D A A B 二.填空題(本大題共4小題,每小題5分,共計(jì)20分) 18、解:(1)證明 所以數(shù)列是等差數(shù)列,,因此 , 由得. ………………………………………………………6分 (2),, 所以,………………………………………………10分 依題意要使對(duì)于恒成立,只需 解得或,所以的最小值為…………………………………………12分 19.解:(Ⅰ)由題意得 ,所以在上單調(diào)遞減,在上單調(diào)遞增,所以時(shí),取得最小值,此時(shí). ……………………6分 (注:畫(huà)出函數(shù)的圖像,得到的最小值也可以.) (Ⅱ)由的圖像恒過(guò)點(diǎn)及函數(shù)的圖像可知. …………………12分 20(1)證明:取的中點(diǎn)為,連結(jié)AF,EF,BD ∵△BCE正三角形,∴EFBC, 又平面ABC平面BCE,且交線為BC,∴EF⊥平面ABC ,又AD⊥平面ABC∴AD∥EF,∴共面, 又易知在正三角形ABC中,AF⊥BC, ∴平面,又平面 故;..........6分 (2)由(1)知EF//AD 所以有 所以,所以 即...............................12分 21.解:(1),即令 ,則 x 1 (1,3) 3 (3,4) 4 _ 0 + -6 -18 -12 在[1,4]上最大值………………………………6分 (2)函數(shù)的圖象與圖象恰有3個(gè)交點(diǎn),即恰有3個(gè)不等實(shí)根,其中是其中一個(gè)根 ,有兩個(gè)不等零的不等實(shí)根. ∴ 且 …………………………… 12分 (2)要使,間一定存在“分界函數(shù)”,則時(shí),恒成立. 由已知, ∴時(shí),在上恒成立. 下證時(shí),在上不恒成立. 由已知 記必存在使 ∴必存在使,則時(shí),在上不恒成立. 綜上,. …………………12分- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 新人教版 2019 2020 年高 數(shù)學(xué) 上學(xué) 期期 試題 新人
鏈接地址:http://www.820124.com/p-2891224.html