宜昌市2016-2017學年八年級上期中數學試卷含答案解析.doc
《宜昌市2016-2017學年八年級上期中數學試卷含答案解析.doc》由會員分享,可在線閱讀,更多相關《宜昌市2016-2017學年八年級上期中數學試卷含答案解析.doc(28頁珍藏版)》請在裝配圖網上搜索。
2016-2017學年湖北省宜昌市八年級(上)期中數學試卷 一、選擇題(在各小題給出的四個選項中,只有一項是符合題目要求的,請在答題卡上指定的位置填涂符合要求的選項前面的字母代號.本大題共15小題,每題3分,計45分) 1.若一個三角形的兩邊長分別為3和7,則第三邊長可能是( ?。? A.2 B.3 C.5 D.11 2.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是( ) A. B. C. D. 3.如圖,過△ABC的頂點A,作BC邊上的高,以下作法正確的是( ?。? A. B. C. D. 4.如圖,在△ABC中,∠A=50,∠C=70,則外角∠ABD的度數是( ) A.110 B.120 C.130 D.140 5.如圖,在方格紙中,以AB為一邊作△ABP,使之與△ABC全等,從P1,P2,P3,P4四個點中找出符合條件的點P,則點P有( ) A.1個 B.2個 C.3個 D.4個 6.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( ?。? A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD 7.一個正多邊形的內角和為540,則這個正多邊形的每一個外角等于( ?。? A.108 B.90 C.72 D.60 8.一個等腰三角形的兩邊長分別為4,8,則它的周長為( ?。? A.12 B.16 C.20 D.16或20 9.兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,詹姆斯在探究箏形的性質時,得到如下結論: ①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD, 其中正確的結論有( ) A.0個 B.1個 C.2個 D.3個 10.如圖,在Rt△ABC中,∠C=90,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=15,則△ABD的面積是( ?。? A.15 B.30 C.45 D.60 11.如圖,在△ABC中,∠ABC=50,∠ACB=60,點E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點D,連接AD,下列結論中不正確的是( ?。? A.∠BAC=70 B.∠DOC=90 C.∠BDC=35 D.∠DAC=55 12.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為( ?。? A.13 B.15 C.17 D.19 13.如圖,直線MN是四邊形AMBN的對稱軸,點P是直線MN上的點,下列判斷錯誤的是( ) A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM 14.如圖,AD是△ABC的角平分線,則AB:AC等于( ?。? A.BD:CD B.AD:CD C.BC:AD D.BC:AC 15.如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( ) A.1個 B.2個 C.3個 D.4個 二.解答題(共9小題) 16.如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=80,∠ABC=70.求∠BAD,∠AOF. 17.如圖,AB=AD,CB=CD,求證:AC平分∠BAD. 18.如圖,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求證:BC=DE. 19.如圖,在△ABC中,AB=AC,點D是BC邊上的中點,DE、DF分別垂直AB、AC于點E和F. 求證:DE=DF. 20.如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75方向上,兩小時后,輪船在B處測得小島C在北偏東60方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由. 21.如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB. 22.如圖,在等邊△ABC中,點F是AC邊上一點,延長BC到點D,使BF=DF,若CD=CF,求證: (1)點F為AC的中點; (2)過點F作FE⊥BD,垂足為點E,請畫出圖形并證明BD=6CE. 23.如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D. (1)當∠BQD=30時,求AP的長; (2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由. 24.在等腰Rt△ABC中,∠ACB=90,AC=BC,點D是BC邊上一點,BN⊥AD交AD的延長線于點N. (1)如圖1,若CM∥BN交AD于點M. ①直接寫出圖1中所有與∠MCD相等的角: ;(注:所找到的相等關系可以直接用于第②小題的證明過程 ②過點C作CG⊥BN,交BN的延長線于點G,請先在圖1中畫出輔助線,再回答線段AM、CG、BN有怎樣的數量關系,并給予證明. (2)如圖2,若CM∥AB交BN的延長線于點M.請證明:∠MDN+2∠BDN=180. 2016-2017學年湖北省宜昌市八年級(上)期中數學試卷 參考答案與試題解析 一、選擇題(在各小題給出的四個選項中,只有一項是符合題目要求的,請在答題卡上指定的位置填涂符合要求的選項前面的字母代號.本大題共15小題,每題3分,計45分) 1.若一個三角形的兩邊長分別為3和7,則第三邊長可能是( ) A.2 B.3 C.5 D.11 【考點】三角形三邊關系. 【分析】根據三角形三邊關系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷. 【解答】解:設第三邊長為x,由題意得: 7﹣3<x<7+3, 則4<x<10, 故選:C. 【點評】本題考查三角形三邊關系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎題,中考??碱}型. 2.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是( ?。? A. B. C. D. 【考點】軸對稱圖形. 【分析】根據軸對稱圖形的概念求解. 【解答】解:A、是軸對稱圖形,故本選項錯誤; B、是軸對稱圖形,故本選項錯誤; C、是軸對稱圖形,故本選項錯誤; D、不是軸對稱圖形,故本選項正確. 故選D. 【點評】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合. 3.如圖,過△ABC的頂點A,作BC邊上的高,以下作法正確的是( ) A. B. C. D. 【考點】三角形的角平分線、中線和高. 【分析】根據三角形高線的定義:過三角形的頂點向對邊引垂線,頂點和垂足之間的線段叫做三角形的高線解答. 【解答】解:為△ABC中BC邊上的高的是A選項. 故選A. 【點評】本題考查了三角形的角平分線、中線、高線,熟記高線的定義是解題的關鍵. 4.如圖,在△ABC中,∠A=50,∠C=70,則外角∠ABD的度數是( ) A.110 B.120 C.130 D.140 【考點】三角形的外角性質. 【分析】根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解. 【解答】解:由三角形的外角性質的,∠ABD=∠A+∠C=50+70=120. 故選B. 【點評】本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵. 5.如圖,在方格紙中,以AB為一邊作△ABP,使之與△ABC全等,從P1,P2,P3,P4四個點中找出符合條件的點P,則點P有( ) A.1個 B.2個 C.3個 D.4個 【考點】全等三角形的判定. 【分析】根據全等三角形的判定得出點P的位置即可. 【解答】解:要使△ABP與△ABC全等,點P到AB的距離應該等于點C到AB的距離,即3個單位長度,故點P的位置可以是P1,P3,P4三個, 故選C 【點評】此題考查全等三角形的判定,關鍵是利用全等三角形的判定進行判定點P的位置. 6.如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( ?。? A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD 【考點】全等三角形的判定. 【分析】根據全等三角形的判定:SAS,AAS,ASA,可得答案. 【解答】解:由題意,得∠ABC=∠BAD,AB=BA, A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A錯誤; B、在△ABC與△BAD中,,△ABC≌△BAD(ASA),故B正確; C、在△ABC與△BAD中,,△ABC≌△BAD(AAS),故C正確; D、在△ABC與△BAD中,,△ABC≌△BAD(SAS),故D正確; 故選:A. 【點評】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角. 7.一個正多邊形的內角和為540,則這個正多邊形的每一個外角等于( ?。? A.108 B.90 C.72 D.60 【考點】多邊形內角與外角. 【分析】首先設此多邊形為n邊形,根據題意得:180(n﹣2)=540,即可求得n=5,再由多邊形的外角和等于360,即可求得答案. 【解答】解:設此多邊形為n邊形, 根據題意得:180(n﹣2)=540, 解得:n=5, 故這個正多邊形的每一個外角等于: =72. 故選C. 【點評】此題考查了多邊形的內角和與外角和的知識.注意掌握多邊形內角和定理:(n﹣2)?180,外角和等于360. 8.一個等腰三角形的兩邊長分別為4,8,則它的周長為( ?。? A.12 B.16 C.20 D.16或20 【考點】等腰三角形的性質;三角形三邊關系. 【分析】由于題中沒有指明哪邊是底哪邊是腰,則應該分兩種情況進行分析. 【解答】解:①當4為腰時,4+4=8,故此種情況不存在; ②當8為腰時,8﹣4<8<8+4,符合題意. 故此三角形的周長=8+8+4=20. 故選C. 【點評】本題考查的是等腰三角形的性質和三邊關系,解答此題時注意分類討論,不要漏解. 9.兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,詹姆斯在探究箏形的性質時,得到如下結論: ①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD, 其中正確的結論有( ?。? A.0個 B.1個 C.2個 D.3個 【考點】全等三角形的判定與性質. 【專題】新定義. 【分析】先證明△ABD與△CBD全等,再證明△AOD與△COD全等即可判斷. 【解答】解:在△ABD與△CBD中, , ∴△ABD≌△CBD(SSS), 故③正確; ∴∠ADB=∠CDB, 在△AOD與△COD中, , ∴△AOD≌△COD(SAS), ∴∠AOD=∠COD=90,AO=OC, ∴AC⊥DB, 故①②正確; 故選D 【點評】此題考查全等三角形的判定和性質,關鍵是根據SSS證明△ABD與△CBD全等和利用SAS證明△AOD與△COD全等. 10.如圖,在Rt△ABC中,∠C=90,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=15,則△ABD的面積是( ?。? A.15 B.30 C.45 D.60 【考點】角平分線的性質. 【分析】判斷出AP是∠BAC的平分線,過點D作DE⊥AB于E,根據角平分線上的點到角的兩邊距離相等可得DE=CD,然后根據三角形的面積公式列式計算即可得解. 【解答】解:由題意得AP是∠BAC的平分線,過點D作DE⊥AB于E, 又∵∠C=90, ∴DE=CD, ∴△ABD的面積=AB?DE=154=30. 故選B. 【點評】本題考查了角平分線上的點到角的兩邊距離相等的性質以及角平分線的畫法,熟記性質是解題的關鍵. 11.如圖,在△ABC中,∠ABC=50,∠ACB=60,點E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點D,連接AD,下列結論中不正確的是( ?。? A.∠BAC=70 B.∠DOC=90 C.∠BDC=35 D.∠DAC=55 【考點】角平分線的性質;三角形內角和定理. 【專題】計算題. 【分析】根據三角形的內角和定理列式計算即可求出∠BAC=70,再根據角平分線的定義求出∠ABO,然后利用三角形的內角和定理求出∠AOB再根據對頂角相等可得∠DOC=∠AOB,根據鄰補角的定義和角平分線的定義求出∠DCO,再利用三角形的內角和定理列式計算即可∠BDC,判斷出AD為三角形的外角平分線,然后列式計算即可求出∠DAC. 【解答】解:∵∠ABC=50,∠ACB=60, ∴∠BAC=180﹣∠ABC﹣∠ACB=180﹣50﹣60=70, 故A選項正確, ∵BD平分∠ABC, ∴∠ABO=∠ABC=50=25, 在△ABO中, ∠AOB=180﹣∠BAC﹣∠ABO=180﹣70﹣25=85, ∴∠DOC=∠AOB=85, 故B選項錯誤; ∵CD平分∠ACE, ∴∠ACD=(180﹣60)=60, ∴∠BDC=180﹣85﹣60=35, 故C選項正確; ∵BD、CD分別是∠ABC和∠ACE的平分線, ∴AD是△ABC的外角平分線, ∴∠DAC=(180﹣70)=55, 故D選項正確. 故選:B. 【點評】本題考查了角平分線的性質,三角形的內角和定理,角平分線的定義,熟記定理和概念是解題的關鍵. 12.如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為( ?。? A.13 B.15 C.17 D.19 【考點】線段垂直平分線的性質. 【分析】根據線段垂直平分線性質得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周長為AB+BC,代入求出即可. 【解答】解:∵AC的垂直平分線分別交AC、BC于E,D兩點, ∴AD=DC,AE=CE=4, 即AC=8, ∵△ABC的周長為23, ∴AB+BC+AC=23, ∴AB+BC=23﹣8=15, ∴△ABD的周長為AB+BD+AD=AB+BD+CD=AB+BC=15, 故選B. 【點評】本題考查了線段垂直平分線性質的應用,能熟記線段垂直平分線性質定理的內容是解此題的關鍵,注意:線段垂直平分線上的點到線段兩個端點的距離相等. 13.如圖,直線MN是四邊形AMBN的對稱軸,點P是直線MN上的點,下列判斷錯誤的是( ?。? A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM 【考點】軸對稱的性質. 【分析】根據直線MN是四邊形AMBN的對稱軸,得到點A與點B對應,根據軸對稱的性質即可得到結論. 【解答】解:∵直線MN是四邊形AMBN的對稱軸, ∴點A與點B對應, ∴AM=BM,AN=BN,∠ANM=∠BNM, ∵點P時直線MN上的點, ∴∠MAP=∠MBP, ∴A,C,D正確,B錯誤, 故選B. 【點評】本題考查了軸對稱的性質,熟練掌握軸對稱的性質是解題的關鍵. 14.如圖,AD是△ABC的角平分線,則AB:AC等于( ?。? A.BD:CD B.AD:CD C.BC:AD D.BC:AC 【考點】角平分線的性質. 【專題】壓軸題. 【分析】先過點B作BE∥AC交AD延長線于點E,由于BE∥AC,利用平行線分線段成比例定理的推論、平行線的性質,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性質可有=,而利用AD時角平分線又知∠E=∠DAC=∠BAD,于是BE=AB,等量代換即可證. 【解答】解:如圖 過點B作BE∥AC交AD延長線于點E, ∵BE∥AC, ∴∠DBE=∠C,∠E=∠CAD, ∴△BDE∽△CDA, ∴=, 又∵AD是角平分線, ∴∠E=∠DAC=∠BAD, ∴BE=AB, ∴=, ∴AB:AC=BD:CD. 故選:A. 【點評】此題考查了角平分線的定義、相似三角形的判定和性質、平行線分線段成比例定理的推論.關鍵是作平行線. 15.如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( ?。? A.1個 B.2個 C.3個 D.4個 【考點】等邊三角形的性質;全等三角形的判定;角平分線的性質. 【分析】根據到角的兩邊的距離相等的點在角的平分線上可得AP平分∠BAC,從而判斷出①正確,然后根據等邊對等角的性質可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根據內錯角相等兩直線平行可得QP∥AB,從而判斷出②正確,然后證明出△APR與△APS全等,根據全等三角形對應邊相等即可得到③正確,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正確. 【解答】解:∵△ABC是等邊三角形,PR⊥AB,PS⊥AC,且PR=PS, ∴P在∠A的平分線上,故①正確; 由①可知,PB=PC,∠B=∠C,PS=PR, ∴△BPR≌△CPS, ∴AS=AR,故②正確; ∵AQ=PQ, ∴∠PQC=2∠PAC=60=∠BAC, ∴PQ∥AR,故③正確; 由③得,△PQC是等邊三角形, ∴△PQS≌△PCS, 又由②可知,④△BRP≌△QSP,故④也正確, ∵①②③④都正確, 故選D. 【點評】本題考查了角平分線的性質與全等三角形的判定與性質,準確識圖并熟練掌握全等三角形的判定方法與性質是解題的關鍵. 二.解答題(共9小題) 16.如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=80,∠ABC=70.求∠BAD,∠AOF. 【考點】三角形內角和定理;三角形的角平分線、中線和高. 【分析】在直角三角形中,根據兩銳角互余即可得到∠BAD=20,根據角平分線的性質可求出∠BAO和∠ABO,最后由三角形外角的性質求得∠AOF=75. 【解答】解:∵AD是高,∠ABC=70, ∴∠BAD=90﹣70=20, ∵AE、BF是角平分線,∠BAC=80,∠ABC=70, ∴∠ABO=35,∠BAO=40, ∴∠AOF=∠ABO+∠BAO=75. 【點評】本題考查了三角形的內角和定理,外角的性質,三角形的高線與角平分線的性質,熟練掌握各性質定理是解題的關鍵. 17.如圖,AB=AD,CB=CD,求證:AC平分∠BAD. 【考點】全等三角形的判定與性質. 【分析】根據全等三角形的判定定理SSS推出△BAC≌△DAC,根據全等三角形的性質可得∠BAC=∠DAC即可. 【解答】解:在△BAC和△DAC中, , ∴△BAC≌△DAC(SAS), ∴∠BAC=∠DAC, ∴AC平分∠BAD. 【點評】本題考查了角平分線定義和全等三角形的性質和判定的應用,關鍵是推出△BAC≌△DAC,全等三角形的判定方法有SAS、ASA、AAS. 18.如圖,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求證:BC=DE. 【考點】全等三角形的判定與性質. 【分析】先通過∠BAD=∠CAE得出∠BAC=∠DAE,從而證明△ABC≌△ADE,得到BC=DE. 【解答】證明:∵∠BAD=∠CAE, ∴∠BAD+∠DAC=∠CAE+∠DAC. 即∠BAC=∠DAE, 在△ABC和△ADE中, ∴△ABC≌△ADE(AAS). ∴BC=DE. 【點評】本題考查三角形全等的判定方法和全等三角形的性質,判定兩個三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角 19.如圖,在△ABC中,AB=AC,點D是BC邊上的中點,DE、DF分別垂直AB、AC于點E和F. 求證:DE=DF. 【考點】等腰三角形的性質;全等三角形的判定與性質. 【專題】證明題. 【分析】D是BC的中點,那么AD就是等腰三角形ABC底邊上的中線,根據等腰三角形三線合一的特性,可知道AD也是∠BAC的角平分線,根據角平分線的點到角兩邊的距離相等,那么DE=DF. 【解答】證明: 證法一:連接AD. ∵AB=AC,點D是BC邊上的中點 ∴AD平分∠BAC(三線合一性質), ∵DE、DF分別垂直AB、AC于點E和F. ∴DE=DF(角平分線上的點到角兩邊的距離相等). 證法二:在△ABC中, ∵AB=AC ∴∠B=∠C(等邊對等角) …(1分) ∵點D是BC邊上的中點 ∴BD=DC …(2分) ∵DE、DF分別垂直AB、AC于點E和F ∴∠BED=∠CFD=90… 在△BED和△CFD中 ∵, ∴△BED≌△CFD(AAS), ∴DE=DF(全等三角形的對應邊相等). 【點評】本題考查了等腰三角形的性質及全等三角形的判定與性質;利用等腰三角形三線合一的性質是解答本題的關鍵. 20.如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75方向上,兩小時后,輪船在B處測得小島C在北偏東60方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由. 【考點】解直角三角形的應用-方向角問題. 【分析】作CE⊥AB,利用直角三角形性質求出CE長,和15海里比較即可看出船不改變航向是否會觸礁. 【解答】解:作CE⊥AB于E, ∵A處測得小島P在北偏東75方向, ∴∠CAB=15, ∵在B處測得小島P在北偏東60方向, ∴∠ACB=15, ∴AB=PB=218=36(海里), ∵∠CBD=30, ∴CE=BC=18>15, ∴船不改變航向,不會觸礁. 【點評】此題考查了解直角三角形的應用,關鍵找出題中的等腰三角形,然后再根據直角三角形性質求解. 21.如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB. 【考點】全等三角形的判定與性質;線段垂直平分線的性質;等腰直角三角形. 【分析】求證△AFC≌△CEB可得∠ACF=∠BCF,根據等腰三角形底邊三線合一即可解題. 【解答】證明:∵CA=CB ∴∠CAB=∠CBA ∵△AEC和△BCD為等腰直角三角形, ∴∠CAE=∠CBD=45,∠FAG=∠FBG, ∴∠FAB=∠FBA, ∴AF=BF, 在三角形ACF和△CBF中, , ∴△AFC≌△BCF(SSS), ∴∠ACF=∠BCF ∴AG=BG,CG⊥AB(三線合一), 即CG垂直平分AB. 【點評】本題考查了全等三角形的判定,考查了全等三角形對應角相等的性質,考查了等腰三角形底邊三線合一的性質. 22.如圖,在等邊△ABC中,點F是AC邊上一點,延長BC到點D,使BF=DF,若CD=CF,求證: (1)點F為AC的中點; (2)過點F作FE⊥BD,垂足為點E,請畫出圖形并證明BD=6CE. 【考點】作圖—基本作圖;等邊三角形的性質. 【專題】作圖題. 【分析】(1)根據等邊三角形的性質得∠ABC=∠ACB=60,利用∠CFD=∠D,則根據三角形外角性質得到∠ACB=2∠D,即∠D=∠ACB=30,然后利用FB=FD得到∠FBD=∠D=30,則BF平分∠ABC,于是根據等邊三角形的性質可得到點F為AC的中點; (2)如圖,過點F作FE⊥BD于E,利用含30度的直角三角形三邊的關系得到CF=2CE,而CD=CF,則CF=2CE,再利用BC=2CF,所以BD=6CE. 【解答】解:(1)∵△ABC為等邊三角形, ∴∠ABC=∠ACB=60, ∵CF=CD, ∴∠CFD=∠D, ∴∠ACB=2∠D,即∠D=∠ACB=30, ∵FB=FD, ∴∠FBD=∠D=30, ∴BF平分∠ABC, ∴AF=CF,即點F為AC的中點; (2)如圖, 在Rt△EFC中,CF=2CE, 而CD=CF, ∴CF=2CE, 在Rt△BCF中,BC=2CF, ∴BC=4CE, ∴BD=6CE. 【點評】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段.作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).記住含30度的直角三角形三邊的關系. 23.如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D. (1)當∠BQD=30時,求AP的長; (2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由. 【考點】等邊三角形的性質;全等三角形的判定與性質;含30度角的直角三角形. 【專題】壓軸題;動點型. 【分析】(1)由△ABC是邊長為6的等邊三角形,可知∠ACB=60,再由∠BQD=30可知∠QPC=90,設AP=x,則PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30,PC=QC,即6﹣x=(6+x),求出x的值即可; (2)作QF⊥AB,交直線AB于點F,連接QE,PF,由點P、Q做勻速運動且速度相同,可知AP=BQ,再根據全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四邊形PEQF是平行四邊形,進而可得出EB+AE=BE+BF=AB,DE=AB,由等邊△ABC的邊長為6可得出DE=3,故當點P、Q運動時,線段DE的長度不會改變. 【解答】解:(1)∵△ABC是邊長為6的等邊三角形, ∴∠ACB=60, ∵∠BQD=30, ∴∠QPC=90, 設AP=x,則PC=6﹣x,QB=x, ∴QC=QB+BC=6+x, ∵在Rt△QCP中,∠BQD=30, ∴PC=QC,即6﹣x=(6+x),解得x=2, ∴AP=2; (2)當點P、Q同時運動且速度相同時,線段DE的長度不會改變.理由如下: 作QF⊥AB,交直線AB于點F,連接QE,PF, 又∵PE⊥AB于E, ∴∠DFQ=∠AEP=90, ∵點P、Q速度相同, ∴AP=BQ, ∵△ABC是等邊三角形, ∴∠A=∠ABC=∠FBQ=60, 在△APE和△BQF中, ∵∠AEP=∠BFQ=90, ∴∠APE=∠BQF, , ∴△APE≌△BQF(AAS), ∴AE=BF,PE=QF且PE∥QF, ∴四邊形PEQF是平行四邊形, ∴DE=EF, ∵EB+AE=BE+BF=AB, ∴DE=AB, 又∵等邊△ABC的邊長為6, ∴DE=3, ∴點P、Q同時運動且速度相同時,線段DE的長度不會改變. 【點評】本題考查的是等邊三角形的性質及全等三角形的判定定理、平行四邊形的判定與性質,根據題意作出輔助線構造出全等三角形是解答此題的關鍵. 24.在等腰Rt△ABC中,∠ACB=90,AC=BC,點D是BC邊上一點,BN⊥AD交AD的延長線于點N. (1)如圖1,若CM∥BN交AD于點M. ①直接寫出圖1中所有與∠MCD相等的角: ∠CAD,∠CBN?。唬ㄗⅲ核业降南嗟汝P系可以直接用于第②小題的證明過程 ②過點C作CG⊥BN,交BN的延長線于點G,請先在圖1中畫出輔助線,再回答線段AM、CG、BN有怎樣的數量關系,并給予證明. (2)如圖2,若CM∥AB交BN的延長線于點M.請證明:∠MDN+2∠BDN=180. 【考點】全等三角形的判定與性質;等腰直角三角形;作圖—基本作圖. 【分析】(1)①結論:∠CAD、CBN.利用同角的余角相等,平行線的性質即可證明. ②由△ACM≌△BCG,推出CM=CG,AM=BG,由∠CMN=∠MNG=∠G=90,推出四邊形MNGC是矩形,推出CM=GN=CG,由此即可證明. (2)過點C作CE平分∠ACB,交AD于點E.由△ACE≌△BCM(ASA),推出CE=CM,又因為∠1=∠2,CD=CD,推出∠CDE=∠CDM,由∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180,即可證明. 【解答】解:(1)①∵CM∥BN,BN⊥AN, ∴∠CMD=∠N=90,∠MCD=∠CBN, ∵∠ACB=90, ∴∠ACM+∠CAD=90,∠MCD+∠ACM=90, ∴∠MCD=∠CAD, 故答案為∠CAD、∠CBN. ②在圖1中畫出圖形,如圖所示, 結論:AM=CG+BN, 證明:在△ACM和△BCG中, , ∴△ACM≌△BCG, ∴CM=CG,AM=BG, ∵∠CMN=∠MNG=∠G=90, ∴四邊形MNGC是矩形, ∴CM=GN=CG, ∴AM=BG=BN+GN=BN+CG. (2)過點C作CE平分∠ACB,交AD于點E. ∵在△ACD和△BDN中,∠ACB=90,AN⊥ND ∴∠4+∠ADC=90=∠5+∠BDN 又∵∠ADC=∠BDN ∴∠4=∠5, ∵∠ACB=90,AC=BC,CE平分∠ACB, ∴∠6=45,∠2=∠3=45 又∵CM∥AB, ∴∠1=∠6=45=∠2=∠3, 在△ACE和△BCM中, , ∴△ACE≌△BCM(ASA) ∴CE=CM 又∵∠1=∠2,CD=CD ∴∠CDE=∠CDM 又∵∠BDN=∠CDE,∠MDN+∠CDE+∠CDM=180 ∴∠MDN+2∠BDN=180. 【點評】本題考查等腰直角三角形的性質、全等三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識,學會添加常用輔助線、構造全等三角形,屬于中考??碱}型. 第28頁(共28頁)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 宜昌市 2016 2017 學年 年級 期中 數學試卷 答案 解析
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-2909785.html