2019-2020年高中數(shù)學(xué) 柱面與平面的截面同步練習(xí) 北師大版選修4-1.doc
《2019-2020年高中數(shù)學(xué) 柱面與平面的截面同步練習(xí) 北師大版選修4-1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 柱面與平面的截面同步練習(xí) 北師大版選修4-1.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 柱面與平面的截面同步練習(xí) 北師大版選修4-1 一、選擇題 1,過(guò)球面上一點(diǎn)可以作球的( ) A.一條切線和一個(gè)切平面 B,兩條切線和一個(gè)切平面 C,無(wú)數(shù)條切線和一個(gè)切平面 D,無(wú)數(shù)條切線和無(wú)數(shù)個(gè)切平面 2,球的半徑為3,球面外一點(diǎn)和球心的距離為6,則過(guò)該點(diǎn)的球的切線和過(guò)切點(diǎn)的半徑所成的角為( ) A,30 B,60 C,90 D,不確定 3,一個(gè)平面和圓柱面的軸成角,則同時(shí)與圓柱面和該平面都相切的球的個(gè)數(shù)為( ) A,0 B,1 C,2 D,由的不同而定 4,從圓外一點(diǎn)P(2,3)引圓的切線,則其切線方程為( ) A, B, C, D, 5,一圓柱面底面的半徑等于2cm,一個(gè)截割圓柱面的平面與軸成60角,從割平面上,下放入圓柱的兩個(gè)切球,使它們都與截面相切,則這兩個(gè)切點(diǎn)的距離為( ) A, B, C, D, 一, 填空題 6,半徑分別為1和2兩個(gè)球的球心相距12,則這兩個(gè)球的外公切線和長(zhǎng)為 內(nèi)公切線的長(zhǎng)為 7,將兩個(gè)半徑為2cm的球嵌入底面半徑為2cm的圓柱中,使兩球的距離為6cm,用一個(gè)平面分別與兩個(gè)球相內(nèi)切,所成的截線為一個(gè)橢圓,則該橢圓的長(zhǎng)軸為 短軸長(zhǎng)為 焦距為 離心率為 8,如圖,AB,CD是兩個(gè)半徑為2的等圓的直徑,AB//CD,AC,BD與兩圓相切,作兩圓公切線EF,切點(diǎn)為F1,F(xiàn)2,交BA,CD延長(zhǎng)線于E,F(xiàn),交AC于G1,交BD于G2,設(shè)EF與BC,CD的交角分別為,G2F1+G2F2= ,若則 三,解答題 9, 已知橢圓如圖,=1,直線L:=1,P是L上一點(diǎn),射線OP交橢圓于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ||OP|=|OR|2.當(dāng)點(diǎn)P在L上移動(dòng)時(shí),求點(diǎn)Q的軌跡方程,并說(shuō)明軌跡是什么曲線. 10, 設(shè)F1、F2為橢圓=1的兩個(gè)焦點(diǎn),P為橢圓上的一點(diǎn).已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,求的值. 參考答案 1,C 2,C 3,C 4,C 5,B 6, 7,6 4 8, ∠1=60 9,解:由題設(shè)知點(diǎn)Q不在原點(diǎn),設(shè)P、R、Q的坐標(biāo)分別為(xP,yP),(xR,yR),(x,y),其中x、y不同時(shí)為零. 設(shè)OP與x軸正方向的夾角為α,則有 xP=|OP|cosα,yP=|OP|sinα xR=|OR|cosα,yR=|OR|sinα x=|OQ|cosα,y=|OQ|sinα 由上式及題設(shè)|OQ||OP|=|OR|2,得 ④ ③ ② ① 由點(diǎn)P在直線L上,點(diǎn)R在橢圓上,得方程組 ⑥ ⑤ 將①②③④代入⑤⑥,整理得點(diǎn)Q的軌跡方程為=1(其中x、y不同時(shí)為零) 所以點(diǎn)Q的軌跡是以(1,1)為中心,長(zhǎng)、短半軸分別為和,且長(zhǎng)軸與x軸平行的橢圓,去掉坐標(biāo)原點(diǎn). 10, 解法一:由已知|PF1|+|PF2|=6,|F1F2|=2, 根據(jù)直角的不同位置,分兩種情況: 若∠PF2F1為直角,則|PF1|2=|PF2|2+|F1F2|2 即|PF1|2=(6-|PF1|)2+20, 得|PF1|=,|PF2|=,故; 若∠F1PF2為直角,則|F1F2|2=|PF1|2+|PF2|2, 即20=|PF1|2+(6-|PF1|)2, 得|PF1|=4,|PF2|=2,故=2. 解法二:由橢圓的對(duì)稱性不妨設(shè)P(x,y)(x>0,y>0),則由已知可得F1(-,0),F(xiàn)2(,0). 根據(jù)直角的不同位置,分兩種情況:若∠PF2F1為直角,則P(,) 于是|PF1|=,|PF2|=,故 若∠F1PF2為直角,則 解得,即P(), 于是|PF1|=4,|PF2|=2,故=2.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 柱面與平面的截面同步練習(xí) 北師大版選修4-1 2019 2020 年高 數(shù)學(xué) 柱面 平面 截面 同步 練習(xí) 北師大 選修
鏈接地址:http://www.820124.com/p-3206777.html