2019-2020年高二數(shù)學(xué)下學(xué)期期中試題 文 新人教A版.doc
《2019-2020年高二數(shù)學(xué)下學(xué)期期中試題 文 新人教A版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué)下學(xué)期期中試題 文 新人教A版.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué)下學(xué)期期中試題 文 新人教A版 第Ⅰ卷 一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的) 1、已知復(fù)數(shù)滿足,則( ) A. B. C. D. 2、已知集合,則下列結(jié)論正確的是( ) A. B. C. D. 3、用反證法證明命題:“已知,如果可被5整除,那么中至少有一個能被5整除”時,假設(shè)的內(nèi)容應(yīng)為( ) A.都能被5整除 B.都不能被5整除 C.不都能被5整除 D.不能被5整除 4、已知的取值如下表所示: 如果與顯線性相關(guān),且線性回歸方程為,則( ) A. B. C. D. 5、如圖給出一個算法程序框圖,該算法程序框圖的功能是( ) A.求三數(shù)的最大數(shù) B.求三數(shù)的最小數(shù) C.將按從小到大排列 D.將按從大到小排列 6、集合,若,則實數(shù)的取值范圍是( ) A. B. C. D. 7、由無理數(shù)引發(fā)的數(shù)學(xué)危機已知延續(xù)到19世紀(jì),直到1872年,德國數(shù)學(xué)家戴德金提出了“戴德金分割“,才結(jié)束了持續(xù)xx年的數(shù)學(xué)史上的第一次危機,所謂戴德金分割,是指將有理數(shù)集Q劃分為兩個非空的子集M與N,且滿足,M中的每一個元素都小于N中的每一個運算,則稱為戴金德分割,試判斷,對于任一個戴金德分割,下列選項中不可能成了的是( ) A.M沒有最大元素,N有一個最小元素 B.M沒有最大元素,N沒有最小元素 C.M有一個最大元素,N有一個最小元素 D.M有一個最大元素,N沒有最小元素 8、已知條件或,條件,則是的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 9、由10個乒乓球,將它們?nèi)我夥殖蓛山M,求出這兩組乒乓球個數(shù)的乘積,再將每組乒乓球任意分成兩組,求出這兩組乒乓球個數(shù)的乘積,如此下去,直到不能分為止,則所有乘積的和為( ) A.55 B.45 C.90 D.100 10、已知,若對任意的,存在,使,則的取值范圍是( ) A. B. C. D. 第Ⅱ卷 二、填空題:本大題共5小題,每小題5分,共25分,把答案填在答題卷的橫線上。. 11、的共軛復(fù)數(shù)為 12、函數(shù)的定義域為 13、已知函數(shù)且,無論a為何值,該函數(shù)的圖象恒過一個定點,此定點的坐標(biāo)為 14、若為R上的奇函數(shù),當(dāng)時,,則 15、甲乙丙三名同學(xué)中有一個人考了滿分,當(dāng)他們被問到誰考了滿分時, 甲說:丙沒有考滿分; 乙說:是我考的; 丙說:甲說真話。 實施證明:在這三名同學(xué)中,只有一人說的是假話,那么得滿分的同學(xué)是 三、解答題:本大題共6小題,滿分75分,解答應(yīng)寫出文字說明、證明過程或演算步驟 16、(本小題滿分12分) 已知為復(fù)數(shù),和均為實數(shù),其中是虛數(shù)單位。 (1)求復(fù)數(shù); (2)若復(fù)數(shù)在復(fù)平面上對應(yīng)的點在第一象限,求實數(shù)a的取值范圍。 17、(本小題滿分12分) 已知函數(shù)且 (1)求的定義域; (2)判斷的奇偶性并給予證明; (3)當(dāng)時,求使的x的取值范圍。 18、(本小題滿分12分) 已知函數(shù)(其中為常數(shù),且)的圖象經(jīng)過點。 (1)求; (2)若不等式在時恒成立,求實數(shù)m的取值范圍。 19、(本小題滿分12分) 從某大學(xué)中堆積選取7名女大學(xué)生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如表: (1)求根據(jù)女大學(xué)生的身高x預(yù)報體重y的回歸方程; (2)利用(1)中的回歸方程,分析這7名女大學(xué)生的升高和體重的變化,并預(yù)報一名升高為172cm的女大學(xué)生的體重。 附:回歸直線的斜率和截距的最小二乘法估計公式分別為: 20、(本小題滿分13分) 已知命題:“,使等式成立“是真命題。 (1)求實數(shù)m的取值集合M; (2)設(shè)不等式的解集為N,若N是M的必要條件,求a的取值范圍。 21、(本小題滿分14分) 已知集合M是滿足下列形式的函數(shù)的全體:存在非零常數(shù)k,對定義域中的任意,等式恒成立。 (1)判斷一次函數(shù)是否屬于集合M; (2)證明:函數(shù)屬于集合M,并找出一個常數(shù)k; (3)已知函數(shù)與的圖象有公共點,證明:。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高二數(shù)學(xué)下學(xué)期期中試題 新人教A版 2019 2020 年高 數(shù)學(xué) 下學(xué) 期期 試題 新人
鏈接地址:http://www.820124.com/p-3222687.html