中考數(shù)學 第一部分 基礎知識過關 第四章 圖形的初步認識與三角形 第13講 線段、角、相交線與平行線精練.doc
《中考數(shù)學 第一部分 基礎知識過關 第四章 圖形的初步認識與三角形 第13講 線段、角、相交線與平行線精練.doc》由會員分享,可在線閱讀,更多相關《中考數(shù)學 第一部分 基礎知識過關 第四章 圖形的初步認識與三角形 第13講 線段、角、相交線與平行線精練.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第四章 圖形的初步認識與三角形 第13講 線段、角、相交線與平行線 A組 基礎題組 一、選擇題 1.如圖所示,某同學的家在A處,星期日他到書店去買書,想盡快趕到書店B,請你幫助他選擇一條最近的路線 ( ) A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 2.(xx濰坊)把一副三角板放在同一水平桌面上,擺放成如圖所示的形狀,使兩個直角頂點重合,兩條斜邊平行,則∠1的度數(shù)是( ) A.45 B.60 C.75 D.82.5 3.(xx河北)如圖,快艇從P處向正北航行到A處時,向左轉50航行到B處,再向右轉80繼續(xù)航行,此時的航行方向為( ) A.北偏東30 B.北偏東80 C.北偏西30 D.北偏西50 4.如圖,C、D是線段AB上的兩點,且D是線段AC的中點,若AB=10 cm,BC=4 cm,則AD的長為( ) A.2 cm B.3 cm C.4 cm D.6 cm 5.(xx聊城)如圖,直線AB∥EF,點C是直線AB上一點,點D是直線AB外一點,若∠BCD=95,∠CDE=25,則∠DEF的度數(shù)是( ) A.110 B.115 C.120 D.125 二、填空題 6.(xx河南)如圖,直線AB,CD相交于點O,EO⊥AB于點O,∠EOD=50,則∠BOC的度數(shù)為 . 7.(xx浙江杭州)已知直線a∥b,若∠1=4050,則∠2= . 8.點A為直線l外一點,點B和點C在直線l上,A,B,C三點所圍成的三角形的面積是10,BC=5,則點A到直線l的距離為 . 三、解答題 9.(xx泰安改編)如圖,將一張含有30角的三角形紙片的兩個頂點疊放在矩形的兩條對邊上,若∠2=44,求∠1的大小. 10.如圖,已知CD⊥AB于點D,EF⊥AB于點F,∠1=∠2. (1)求證:CD∥EF; (2)判斷∠ADG與∠B的數(shù)量關系,并說明理由. B組 提升題組 一、選擇題 1.把一條彎曲的公路改成直道,可以縮短路程.用幾何知識解釋其道理正確的是( ) A.兩點確定一條直線 B.垂線段最短 C.兩點之間線段最短 D.三角形兩邊之和大于第三邊 2.(xx臨沂)如圖,AB∥CD,∠D=42,∠CBA=64,則∠CBD的度數(shù)是( ) A.42 B.64 C.74 D.106 3.(xx臨沂)如圖,將直尺與含30角的三角尺擺放在一起,若∠1=20,則∠2的度數(shù)是( ) A.50 B.60 C.70 D.80 4.(xx濰坊)如圖,∠BCD=90,AB∥DE,則∠α與∠β滿足( ) A.∠α+∠β=180 B.∠β-∠α=90 C.∠β=3∠α D.∠α+∠β=90 二、填空題 5.(xx岱岳模擬)將一把直尺與一塊三角板如圖放置,若∠1=41,則∠2的度數(shù)為 . 6.已知線段AB=8 cm,在直線AB上取線段BC,使BC等于3 cm,則線段AC= cm. 三、解答題 7.如圖,一個由4條線段構成的“魚”形圖案,其中∠1=50,∠2=50,∠3=130,找出圖中的平行線,并說明理由. 第四章 圖形的初步認識與三角形 第13講 線段、角、相交線與平行線 A組 基礎題組 一、選擇題 1.B 2.C 如圖所示,過點C作CF∥AB, ∴∠ACF=∠A=45, ∵AB∥DE, ∴CF∥DE. ∴∠DCF=∠D=30. ∴∠1=∠ACF+∠DCF=45+30=75. 3.A 如圖,過B作BC∥AP,則∠2=∠1=50. ∴∠3=80-∠2=30,此時的航行方向為北偏東30,故選A. 4.B ∵AB=10 cm,BC=4 cm,∴AC=AB-BC=6 cm.又點D是AC的中點,∴AD=12AC=3 cm,故選B. 5.C 過點D作AB的平行線MN, ∵AB∥MN,∠BCD=95, ∴∠CDN=180-∠BCD=85. 又∵∠CDE=25, ∴∠EDN=∠CDN-∠CDE=60. 又∵EF∥AB,∴EF∥MN, ∴∠DEF=180-∠EDN=120. 二、填空題 6.答案 140 解析 ∵EO⊥AB,∴∠EOB=90, ∴∠BOD=90-∠EOD=40, ∴∠BOC=180-∠BOD=180-40=140. 7.答案 13910 解析 ∠2=180-4050=13910. 8.答案 4 解析 根據(jù)三角形的面積是10,BC=5,可求出BC邊上的高為4,即點A到直線l的距離為4. 三、解答題 9.解析 如圖,∵矩形的對邊平行, ∴∠2=∠3=44, ∵∠3=∠1+30, ∴∠1=44-30=14. 10.解析 (1)證明:∵CD⊥AB于點D,EF⊥AB于點F, ∴CD∥EF. (2)∠ADG=∠B. 理由:∵CD∥EF, ∴∠2=∠DCB. ∵∠1=∠2, ∴∠1=∠DCB, ∴DG∥BC, ∴∠ADG=∠B. B組 提升題組 一、選擇題 1.C 要想縮短兩地之間的路程,就盡量使兩地在一條直線上,因為兩點之間線段最短.故選C. 2.C ∵AB∥CD, ∴∠CBA=∠C=64, 在△BCD中,∠CBD=180-∠C-∠D=180-64-42=74, 故選C. 3.A ∵∠BEF是△AEF的外角,∠1=20,∠F=30, ∴∠BEF=∠1+∠F=50, ∵AB∥CD, ∴∠2=∠BEF=50, 故選A. 4.B 延長BC交DE于點F. ∵AB∥DE, ∴∠α=∠1. 又∵∠BCD=90, ∴∠DCF=90. ∠β=∠1+∠DCF=∠α+90,即∠β-∠α=90. 二、填空題 5.答案 131 解析 ∠1的余角與∠2構成一組補角,∴∠2的度數(shù)為131. 6.答案 5或11 解析 根據(jù)題意,知點C可能在線段AB上,也可能在線段AB的延長線上.若點C在線段AB上,則AC=AB-BC=8-3=5(cm).若點C在線段AB的延長線上,則AC=AB+BC=8+3=11(cm). 三、解答題 7.解析 平行線:OB∥AC,OA∥BC. 理由:∵∠1=50,∠2=50, ∴∠1=∠2, ∴OB∥AC. ∵∠2=50, ∠3=130, ∴∠2+∠3=180, ∴OA∥BC.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 中考數(shù)學 第一部分 基礎知識過關 第四章 圖形的初步認識與三角形 第13講 線段、角、相交線與平行線精練 中考 數(shù)學 第一 部分 基礎知識 過關 第四 圖形 初步 認識 三角形 13 線段 相交 平行線
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-3308779.html