河南省平頂山市衛(wèi)東區(qū)2019年中考數(shù)學3月一模試題(含解析).doc
《河南省平頂山市衛(wèi)東區(qū)2019年中考數(shù)學3月一模試題(含解析).doc》由會員分享,可在線閱讀,更多相關《河南省平頂山市衛(wèi)東區(qū)2019年中考數(shù)學3月一模試題(含解析).doc(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。
河南省平頂山市衛(wèi)東區(qū)2019年中考數(shù)學3月一模試題 一.選擇題(共10小題,滿分30分,每小題3分) 1.﹣1的相反數(shù)是( ?。? A.1 B.0 C.﹣1 D.2 2.我縣人口約為530060人,用科學記數(shù)法可表示為( ?。? A.5300610人 B.5.3006105人 C.53104人 D.0.53106人 3.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是( ?。? A. B. C. D. 4.下列各運算中,計算正確的是( ?。? A.2a?3a=6a B.(3a2)3=27a6 C.a(chǎn)4a2=2a D.(a+b)2=a2+ab+b2 5.據(jù)調(diào)查,某班30位同學所穿鞋子的尺碼如下表所示:則該班這30位同學所穿鞋子尺碼的眾數(shù)是( ?。? 碼號/碼 33 34 35 36 37 人數(shù) 3 6 8 8 5 A.8 B.35 C.36 D.35和36 6.《九章算術》是中國古代第一部數(shù)學專著,它對我國古代后世的數(shù)學家產(chǎn)生了深遠的影響,該書中記載了一個問題,大意是:有幾個人一起去買一件物品,每人出8元,多3元;每人出7元,少4元,問有多少人?該物品價幾何?設有x人,物品價值y元,則所列方程組正確的是( ?。? A. B. C. D. 7.關于x的一元二次方程ax2+3x﹣2=0有兩個不相等的實數(shù)根,則a的值可以是( ?。? A.0 B.﹣1 C.﹣2 D.﹣3 8.如圖,已知AB∥DE,∠ABC=75,∠CDE=145,則∠BCD的值為( ) A.20 B.30 C.40 D.70 9.已知:如圖,四邊形AOBC是矩形,以O為坐標原點,OB、OA分別在x軸、y軸上,點A的坐標為(0,3),∠OAB=60,以AB為軸對折后,C點落在D點處,則D點的坐標為( ) A. B. C. D. 10.如圖所示,菱形ABCD的邊長為5cm,高為4cm,直線l⊥邊AB,并從點A出發(fā)以1cm/s的速度向右運動,若直線l在菱形ABCD內(nèi)部截得的線段MN的長為y(cm),則下列最能反映y(cm)與運動時間x(s)之間的函數(shù)關系的圖象是( ?。? A. B. C. D. 二.填空題(共5小題,滿分15分,每小題3分) 11.= ?。? 12.將拋物線y=3x2﹣6x+4先向右平移3個單位,再向上平移2個單位后得到新的拋物線,則新拋物線的頂點坐標是 . 13.袋中裝有一個紅球和二個黃球,它們除了顏色外都相同,隨機從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機摸出一球,兩次都摸到紅球的概率是 ?。? 14.如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,交BA的延長線于點F,若的長為π,則圖中陰影部分的面積為 ?。? 15.如圖,折疊長方形紙片ABCD,先折出對角線BD,再將AD折疊到BD上,得到折痕DE,點A的對應點是點F,若AB=8,BC=6,則AE的長為 ?。? 三.解答題(共8小題,滿分75分) 16.(8分)先化簡,再求值:(x+2y)2﹣(2y+x)(2y﹣x)﹣2x2,其中x=+2,y=﹣2. 17.(9分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分) 根據(jù)所給信息,解答以下問題: (1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是 度; (2)補全條形統(tǒng)計圖; (3)所抽取學生的足球運球測試成績的中位數(shù)會落在 等級; (4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人? 18.(9分)如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連結AC,將△ACE沿 AC翻轉(zhuǎn)得到△ACF,直線FC與直線AB相交于點G. (1)求證:FG是⊙O的切線; (2)若B為OG的中點,CE=,求⊙O的半徑長; (3)①求證:∠CAG=∠BCG; ②若⊙O的面積為4π,GC=2,求GB的長. 19.(9分)知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60方向行駛至B地,再沿北偏西37方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53≈,cos53≈,tan53≈) 20.(9分)在一次軍事演習中,紅方偵查員發(fā)現(xiàn)藍方的指揮部P設在S區(qū).到公路a與公路b的距離相等,并且到水井M與小樹N的距離也相等,請你幫助偵查員在圖上標出藍方指揮部P的位置.(不寫作法,保留作圖痕跡) 21.(10分)某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期30天的試銷售,售價為8元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成如圖所示的圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少5件. (1)第24天的日銷售量是 件,日銷售利潤是 元. (2)求線段DE所對應的函數(shù)關系式.(不要求寫出自變量的取值范圍) (3)通過計算說明試銷售期間第幾天的日銷售量最大?最大日銷售量是多少? 22.(10分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH. (1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”) (2)線段AC,AG,AH什么關系?請說明理由; (3)設AE=m, ①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值. ②請直接寫出使△CGH是等腰三角形的m值. 23.(11分)如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3). (1)求拋物線的解析式; (2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值; (3)E是拋物線對稱軸上一點,F(xiàn)是拋物線上一點,是否存在以A,B,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由. 參考答案與試題解析 一.選擇題(共10小題,滿分30分,每小題3分) 1.【分析】只有符號不同的兩個數(shù)叫做互為相反數(shù). 【解答】解:﹣1的相反數(shù)是1. 故選:A. 【點評】本題考查了相反數(shù),在一個數(shù)的前面加上符號就是這個數(shù)的相反數(shù). 2.【分析】根據(jù)科學記數(shù)法的定義及表示方法進行解答即可. 【解答】解:∵530060是6位數(shù), ∴10的指數(shù)應是5, 故選:B. 【點評】本題考查的是科學記數(shù)法的定義及表示方法,熟知以上知識是解答此題的關鍵. 3.【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案. 【解答】解:從左邊看第一層是三個小正方形,第二層左邊一個小正方形, 故選:D. 【點評】本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖. 4.【分析】各項計算得到結果,即可作出判斷. 【解答】解:A、原式=6a2,不符合題意; B、原式=27a6,符合題意; C、原式=a2,不符合題意; D、原式=a2+2ab+b2;不符合題意; 故選:B. 【點評】本題考查了整式的混合運算,熟記法則是解題的關鍵. 5.【分析】根據(jù)眾數(shù)的定義(所有數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)是眾數(shù))即可求得. 【解答】解:在這一組數(shù)據(jù)中35與36出現(xiàn)次數(shù)最多的, 故眾數(shù)是35或36. 故選:D. 【點評】此題考查了眾數(shù)的知識.題目比較簡單,注意眾數(shù)可以不是一個. 6.【分析】根據(jù)題意可得等量關系:人數(shù)8﹣3=物品價值;人數(shù)7+4=物品價值,根據(jù)等量關系列出方程組即可. 【解答】解:設有x人,物品價值y元,由題意得: , 故選:C. 【點評】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系. 7.【分析】由方程根的情況,根據(jù)根的判別式可得到關于a的不等式,可求得a的取值范圍,則可求得答案. 【解答】解: ∵關于x的一元二次方程ax2+3x﹣2=0有兩個不相等的實數(shù)根, ∴△>0且a≠0,即32﹣4a(﹣2)>0且a≠0, 解得a>﹣1且a≠0, 故選:B. 【點評】本題主要考查根的判別式,掌握方程根的情況與根的判別式的關系是解題的關鍵. 8.【分析】延長ED交BC于F,根據(jù)平行線的性質(zhì)求出∠MFC=∠B=75,求出∠FDC=35,根據(jù)三角形外角性質(zhì)得出∠C=∠MFC﹣∠MDC,代入求出即可. 【解答】解:延長ED交BC于F,如圖所示: ∵AB∥DE,∠ABC=75, ∴∠MFC=∠B=75, ∵∠CDE=145, ∴∠FDC=180﹣145=35, ∴∠C=∠MFC﹣∠MDC=75﹣35=40, 故選:C. 【點評】本題考查了三角形外角性質(zhì),平行線的性質(zhì)的應用,解此題的關鍵是求出∠MFC的度數(shù),注意:兩直線平行,同位角相等. 9.【分析】如圖:作DE⊥x軸于點E,靈活運用三角函數(shù)解直角三角形來求點D的坐標. 【解答】解:∵點A的坐標為(0,3), ∴OA=3. 又∵∠OAB=60, ∴OB=OA?tan∠OAB=3,∠ABO=30. ∴BD=BC=OA=3. ∵根據(jù)折疊的性質(zhì)知∠ABD=∠ABC=60, ∴∠DBE=30, ∴DE=BD=,BE= ∴OE=3, ∴E(,). 故選:A. 【點評】本題考查了矩形的性質(zhì)、坐標與圖形性質(zhì)以及折疊問題.翻折前后對應角相等,對應邊相等;注意構造直角三角形利用相應的三角函數(shù)值求解. 10.【分析】根據(jù)題意可以分別得到各段y與x的函數(shù)解析式,從而可以解答本題. 【解答】解:點M從點A到點D的過程中,y==x,(x≤3),故選項A、B、C錯誤, 當點M從D點使點N到點B的過程中,y=4,(3<x≤5), 點M到C的過程中,y==x﹣,(x>5),故選項D正確, 故選:D. 【點評】本題考查動點問題的函數(shù)圖象,解題的關鍵是明確題意,寫出各段的函數(shù)解析式,明確函數(shù)的圖象,利用數(shù)形結合的思想解答. 二.填空題(共5小題,滿分15分,每小題3分) 11.【分析】原式利用負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,以及二次根式性質(zhì)計算即可求出值. 【解答】解:原式=2﹣16+3﹣2=﹣13, 故答案為:﹣13 【點評】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵. 12.【分析】先把y=3x2﹣6x+4配方得到y(tǒng)=3(x﹣1)2+1,則拋物線y=3x2﹣6x+4的頂點坐標為(1,1),然后把點(1,1)先向右平移3個單位,再向上平移2個單位即可得到新拋物線的頂點坐標. 【解答】解:∵y=3x2﹣6x+4=3(x﹣1)2+1, ∴拋物線y=3x2﹣6x+4的頂點坐標為(1,1), ∴把點(1,1)先向右平移3個單位,再向上平移2個單位得到點的坐標為(4,3), 即新拋物線的頂點坐標為(4,3). 故答案為(4,3). 【點評】本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式. 13.【分析】首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗. 【解答】解:畫樹狀圖如下: 由樹狀圖可知,共有9種等可能結果,其中兩次都摸到紅球的有1種結果, 所以兩次都摸到紅球的概率是, 故答案為:. 【點評】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗. 14.【分析】連結AC,如圖,設半徑為r,先根據(jù)切線的性質(zhì)得∠ACD=90,再根據(jù)平行四邊形的性質(zhì)得AB∥CD,AD∥BC,則∠CAF=90,∠1=∠B,∠2=∠3,利用∠B=∠3易得∠1=∠2=45,則根據(jù)弧長公式可得=π,解得r=4,然后根據(jù)扇形面積公式,利用S陰影部分=S△ACD﹣S扇形CAE進行計算即可. 【解答】解:連結AC,如圖,設半徑為r, ∵AB的長為半徑的圓恰好與CD相切于點C, ∴AC⊥CD, ∴∠ACD=90, ∵四邊形ABCD為平行四邊形, ∴AB∥CD,AD∥BC, ∴∠CAF=90,∠1=∠B,∠2=∠3, 而AB=AC, ∴∠B=∠3, ∴∠1=∠2=45, ∵的長為π, ∴=π,解得r=4, 在Rt△ACD中,∵∠2=45, ∴AC=CD=4, ∴S陰影部分=S△ACD﹣S扇形CAE=44﹣=8﹣2π, 故答案為:8﹣2π. 【點評】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了平行四邊形的性質(zhì)和扇形的面積公式. 15.【分析】先利用勾股定理求出BD,再求出DF、BF,設AE=EF=x,在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題. 【解答】解:∵四邊形ABCD是矩形, ∴∠A=90, ∵AB=8,AD=6, ∴BD==10, ∵△DEF是由△DEA翻折得到, ∴DF=AD=6,BF=4, 設AE=EF=x, 在Rt△BEF中,∵EB2=EF2+BF2, ∴(8﹣x)2=x2+42, 解得x=3, ∴AE=3, 故答案為3. 【點評】本題考查矩形的性質(zhì)、勾股定理等知識,解題時,我們常常設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切?,運用勾股定理列出方程求出答案. 三.解答題(共8小題,滿分75分) 16.【分析】利用完全平方公式、平方差公式展開并合并同類項,然后把x、y的值代入進行計算即可得解. 【解答】解:原式=x2+4xy+4y2﹣(4y2﹣x2)﹣2x2 =x2+4xy+4y2﹣4y2+x2﹣2x2 =4xy, 當x=+2,y=﹣2時, 原式=4(+2)(﹣2) =4(3﹣4) =﹣4. 【點評】本題主要考查整式的混合運算﹣化簡求值,解題的關鍵是熟練掌握整式混合運算順序和運算法則及完全平方公式、平方差公式. 17.【分析】(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360乘以C等級人數(shù)所占比例即可得; (2)根據(jù)以上所求結果即可補全圖形; (3)根據(jù)中位數(shù)的定義求解可得; (4)總?cè)藬?shù)乘以樣本中A等級人數(shù)所占比例可得. 【解答】解:(1)∵總?cè)藬?shù)為1845%=40人, ∴C等級人數(shù)為40﹣(4+18+5)=13人, 則C對應的扇形的圓心角是360=117, 故答案為:117; (2)補全條形圖如下: (3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級, 所以所抽取學生的足球運球測試成績的中位數(shù)會落在B等級, 故答案為:B. (4)估計足球運球測試成績達到A級的學生有300=30人. 【點評】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。? 18.【分析】(1)連接OC,由OA=OC得∠OAC=∠OCA,根據(jù)折疊的性質(zhì)得∠OAC=∠FAC,∠F=∠AEC=90,則∠OCA=∠FAC,于是可判斷OC∥AF,根據(jù)平行線的性質(zhì)得∠OCG=∠F=90,然后根據(jù)切線的性質(zhì)得直線FC與⊙O相切; (2)首先證明△OBC是等邊三角形,在Rt△OCE中,根據(jù)OC2=OE2+CE2,構建方程即可解決問題; (3)①根據(jù)等角的余角相等證明即可; ②利用圓的面積公式求出OB,由△GCB∽△GAC,可得=,由此構建方程即可解決問題; 【解答】(1)證明:連接OC,如圖, ∵OA=OC, ∴∠OAC=∠OCA, ∵△ACE沿AC翻折得到△ACF, ∴∠OAC=∠FAC,∠F=∠AEC=90, ∴∠OCA=∠FAC, ∴OC∥AF, ∴∠OCG=∠F=90, ∴OC⊥FG, ∴直線FC與⊙O相切; (2)解:連接BC. ∵點B是Rt△OCG斜邊的中點, ∴CB=OG=OB=OC, ∴△OCB是等邊三角形,且EC是OB上的高, 在Rt△OCE中,∵OC2=OE2+CE2, 即OC2=OC2+()2, ∴OC=2,即⊙O的半徑為2. (3)①∵OC=OB, ∴∠CBA=∠OCB, ∵∠CAG+∠CBA=90,∠BCG+∠BCO=90, ∴∠CAG=∠BCG. ②∵4π=π?OB2, ∴OB=2, 由①可知:△GCB∽△GAC, ∴=,即=, ∴=, 解得GB=2. 【點評】本題屬于圓綜合題,考查了切線的判定,解直角三角形,相似三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,解題的關鍵是學會添加常用輔助線,學會利用方程的思想思考問題,屬于中考壓軸題. 19.【分析】作BD⊥AC,設AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立關于x的方程,解之求得x的值,最后由BC=可得答案. 【解答】解:如圖,作BD⊥AC于點D,則∠BAD=60、∠DBC=53, 設AD=x, 在Rt△ABD中,BD=ADtan∠BAD=x, 在Rt△BCD中,CD=BDtan∠DBC=x=x, 由AC=AD+CD可得x+x=13, 解得:x=﹣3, 則BC===x=(4﹣3)=20﹣5, 即BC兩地的距離為(20﹣5)千米. 【點評】此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉(zhuǎn)化為解直角三角形的知識,利用三角函數(shù)的知識求解. 20.【分析】作公路a與公路b的交角AOB的平分線OC,連接MN,作線段MN的中垂直平分線EF,兩線的交點就是所求. 【解答】解:如圖所示, ①作公路a與公路b的交角AOB的平分線OC, ②連接MN,作線段MN的中垂直平分線EF, EF和OC的交點P就是所求的點. 【點評】本題考查了角平分線的性質(zhì)和線段垂直平分線性質(zhì)的應用,主要考查學生的動手操作能力和理解能力. 21.【分析】(1)根據(jù)第22天銷售了340件,結合時間每增加1天日銷售量減少5件,即可求出第24天的日銷售量,再根據(jù)日銷售利潤=單件利潤日銷售量即可求出日銷售利潤; (2)根據(jù)第22天銷售了340件,結合時間每增加1天日銷售量減少5件,即可求出線段DE的函數(shù)關系式; (3)根據(jù)點(17,340)的坐標利用待定系數(shù)法即可求出線段OD的函數(shù)關系式,聯(lián)立兩函數(shù)關系式求出交點D的坐標,此題得解. 【解答】解:(1)340﹣(24﹣22)5=330(件), 330(8﹣6)=660(元). 故答案為:330;660. (2)線段DE所表示的y與x之間的函數(shù)關系式為y=340﹣5(x﹣22)=﹣5x+450; (3)設線段OD所表示的y與x之間的函數(shù)關系式為y=kx, 將(17,340)代入y=kx中, 340=17k,解得:k=20, ∴線段OD所表示的y與x之間的函數(shù)關系式為y=20x. 聯(lián)立兩線段所表示的函數(shù)關系式成方程組, 得, 解得:, ∴交點D的坐標為(18,360), ∵點D的坐標為(18,360), ∴試銷售期間第18天的日銷售量最大,最大日銷售量是360件. 【點評】本題考查了一次函數(shù)的應用、待定系數(shù)法一次函數(shù)解析式,解題的關鍵是利用待定系數(shù)法求出OD的函數(shù)關系式以及依照數(shù)量關系找出DE的函數(shù)關系式. 22.【分析】(1)證明∠DAC=∠AHC+∠ACH=45,∠ACH+∠ACG=45,即可推出∠AHC=∠ACG; (2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題; (3)①△AGH的面積不變.理由三角形的面積公式計算即可; ②分三種情形分別求解即可解決問題; 【解答】解:(1)∵四邊形ABCD是正方形, ∴AB=CB=CD=DA=4,∠D=∠DAB=90∠DAC=∠BAC=45, ∴AC==4, ∵∠DAC=∠AHC+∠ACH=45,∠ACH+∠ACG=45, ∴∠AHC=∠ACG. 故答案為=. (2)結論:AC2=AG?AH. 理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135, ∴△AHC∽△ACG, =, ∴AC2=AG?AH. (3)①△AGH的面積不變. 理由:∵S△AGH=?AH?AG=AC2=(4)2=16. ∴△AGH的面積為16. ②如圖1中,當GC=GH時,易證△AHG≌△BGC, 可得AG=BC=4,AH=BG=8, ∵BC∥AH, ∴==, ∴AE=AB=. 如圖2中,當CH=HG時, 易證AH=BC=4, ∵BC∥AH, ∴==1, ∴AE=BE=2. 如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.5. 在BC上取一點M,使得BM=BE, ∴∠BME=∠BEM=45, ∵∠BME=∠MCE+∠MEC, ∴∠MCE=∠MEC=22.5, ∴CM=EM,設BM=BE=x,則CM=EM=x, ∴x+x=4, ∴m=4(﹣1), ∴AE=4﹣4(﹣1)=8﹣4, 綜上所述,滿足條件的m的值為或2或8﹣4. 【點評】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型. 23.【分析】(1)由點B、C的坐標利用待定系數(shù)法即可求出拋物線的解析式; (2)設出點M的坐標以及直線BC的解析式,由點B、C的坐標利用待定系數(shù)法即可求出直線BC的解析式,結合點M的坐標即可得出點N的坐標,由此即可得出線段MN的長度關于m的函數(shù)關系式,再結合點M在x軸下方可找出m的取值范圍,利用二次函數(shù)的性質(zhì)即可解決最值問題; (3)討論:當以AB為對角線,利用EA=EB和四邊形AFBE為平行四邊形得到四邊形AFBE為菱形,則點F也在對稱軸上,即F點為拋物線的頂點,所以F點坐標為(﹣1,﹣4);當以AB為邊時,根據(jù)平行四邊形的性質(zhì)得到EF=AB=4,則可確定F的橫坐標,然后代入拋物線解析式得到F點的縱坐標. 【解答】解:(1)將點B(3,0)、C(0,3)代入拋物線y=x2+bx+c中, 得:, 解得:. 故拋物線的解析式為y=x2﹣4x+3. (2)設點M的坐標為(m,m2﹣4m+3),設直線BC的解析式為y=kx+3, 把點B(3,0)代入y=kx+3中, 得:0=3k+3,解得:k=﹣1, ∴直線BC的解析式為y=﹣x+3. ∵MN∥y軸, ∴點N的坐標為(m,﹣m+3). ∵拋物線的解析式為y=x2﹣4x+3=(x﹣2)2﹣1, ∴拋物線的對稱軸為x=2, ∴點(1,0)在拋物線的圖象上, ∴1<m<3. ∵線段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+, ∴當m=時,線段MN取最大值,最大值為. (3)存在.點F的坐標為(2,﹣1)或(0,3)或(4,3). 當以AB為對角線,如圖1, ∵四邊形AFBE為平行四邊形,EA=EB, ∴四邊形AFBE為菱形, ∴點F也在對稱軸上,即F點為拋物線的頂點, ∴F點坐標為(2,﹣1); 當以AB為邊時,如圖2, ∵四邊形AFBE為平行四邊形, ∴EF=AB=2,即F2E=2,F(xiàn)1E=2, ∴F1的橫坐標為0,F(xiàn)2的橫坐標為4, 對于y=x2﹣4x+3, 當x=0時,y=3; 當x=4時,y=16﹣16+3=3, ∴F點坐標為(0,3)或(4,3). 綜上所述,F(xiàn)點坐標為(2,﹣1)或(0,3)或(4,3). 【點評】本題考查了待定系數(shù)法求函數(shù)解析式、二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、兩點間的距離以及等腰三角形的性質(zhì),解題的關鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)利用二次函數(shù)的性質(zhì)解決最值問題;(3)注意分類思想的運用.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 河南省 平頂山市 東區(qū) 2019 年中 數(shù)學 月一模 試題 解析
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-3345768.html