九年級(jí)數(shù)學(xué)上冊(cè) 第3章 圓的基本性質(zhì) 3.3 垂徑定理(2)練習(xí) (新版)浙教版.doc
《九年級(jí)數(shù)學(xué)上冊(cè) 第3章 圓的基本性質(zhì) 3.3 垂徑定理(2)練習(xí) (新版)浙教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)上冊(cè) 第3章 圓的基本性質(zhì) 3.3 垂徑定理(2)練習(xí) (新版)浙教版.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3.3 垂徑定理(2) (見(jiàn)A本25頁(yè)) A 練就好基礎(chǔ) 基礎(chǔ)達(dá)標(biāo) 1.下列命題中,正確的是( B ) A.平分弦的直徑必垂直于這條弦 B.平分弧的直徑垂直于這條弧所對(duì)的弦 C.弦的垂線必經(jīng)過(guò)這條弦所在圓的圓心 D.平分弦的直線必經(jīng)過(guò)這個(gè)圓的圓心 第2題圖 2.如圖所示,已知⊙O的半徑為6,弦AB的長(zhǎng)為8,則圓心O到AB的距離為( B ) A. B.2 C.2 D.10 3.已知⊙O中的一條弦AB與直徑CD垂直相交于點(diǎn)E,并且CE=1,DE=3,那么弦AB的長(zhǎng)等于( B ) A. B.2 C.2 D.4 4.如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于C,D兩點(diǎn),AB=10 cm,CD=6 cm,則AC的長(zhǎng)為( D ) A.0.5 cm B.1 cm C.1.5 cm D.2 cm 第4題圖 第5題圖 5.如圖所示,⊙O的弦AB,AC的夾角為50,MN分別為弧AB和弧AC的中點(diǎn),OM,ON分別交AB,AC于點(diǎn)E,F(xiàn),則∠MON的度數(shù)為( C ) A.110 B.120 C.130 D.100 第6題圖 6.如圖所示,AB為半圓直徑,O為圓心,C為半圓上一點(diǎn),E是弧AC的中點(diǎn),OE交弦AC于點(diǎn)D.若AC=8 cm,DE=2 cm,則OD的長(zhǎng)為 3 cm. 7.某蔬菜基地的圓弧形蔬菜大棚的剖面如圖所示,已知AB=16 m,半徑OA=10 m,則中間柱CD的高度為_(kāi)_4__m. 第7題圖 第8題圖 8.xx西寧中考如圖所示,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30,則CD的長(zhǎng)為_(kāi)_2__. 第9題圖 9.如圖所示,殘破的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D. 已知:AB=24 cm,CD=8 cm. (1)求作此殘片所在的圓(不寫(xiě)作法,保留作圖痕跡); (2)求(1)中所作圓的半徑. 解:(1)圖略 (2)連結(jié)OA,設(shè)OA=x (cm),AD=12 (cm),OD=(x-8) cm. 則根據(jù)勾股定理列方程x2=122+(x-8)2. 解得x=13. ∴圓的半徑為13 cm. 第10題圖 10.如圖所示,AB和CD分別是⊙O上的兩條弦,過(guò)點(diǎn)O分別作ON⊥CD于點(diǎn)N,OM⊥AB于點(diǎn)M,若ON=AB.求證:OM=CD. 第10題答圖 證明:如圖,因?yàn)?ON⊥CD,OM⊥AB,所以M,N分別是AB,CD的中點(diǎn),又因?yàn)镺N=AB,所以易證△ODN≌△BOM,即OM=CD. B 更上一層樓 能力提升 第11題圖 11.如圖所示,⊙O的半徑是6,弦AB=10,CD=8,且AB⊥CD于點(diǎn)P,則OP的長(zhǎng)為( B ) A. B. C.7 D.4 12.如圖所示,AB,AC是⊙O的弦,OE⊥AB,OF⊥AC,垂足分別為點(diǎn)E,F(xiàn).如果EF=3.5,那么BC=__7__. 第12題圖 第13題圖 13.如圖所示,在⊙O內(nèi)有折線OABC,其中OA=8,AB=12,∠A=∠B=60,則BC的長(zhǎng)為_(kāi)_20__. 第14題圖 14.如圖所示,⊙O的直徑為8 m,弦AB,CD相交于點(diǎn)P,已知點(diǎn)C是弧AB的中點(diǎn),弦CD的長(zhǎng)為4 m,求∠APC的度數(shù). 第14題答圖 解:如圖,連結(jié)OC交AB于點(diǎn)E, 過(guò)點(diǎn)O作OF⊥CD于點(diǎn)F. ∵C是的中點(diǎn), ∴OC⊥AB, 即∠CEB=90, ∵OF⊥CD, ∴CF=CD=2 m. ∵⊙O的直徑為8 m,∴OC=4 m, ∴OF==2 m=OC. ∴∠C=30, ∴∠APC=90-∠C=60. C 開(kāi)拓新思路 拓展創(chuàng)新 15.如圖所示,在半徑為3的⊙O中,B是劣弧AC的中點(diǎn),連結(jié)AB并延長(zhǎng)到點(diǎn)D,使BD=AB,連結(jié)AC,BC,CD.如果AB=2,則CD=____. 第15題圖 16.我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓. (1)請(qǐng)分別作出圖(1)中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法). 圖(1) 第16題圖 (2)若在△ABC中,AB=5,AC=3,BC=4,則△ABC的最小覆蓋圓的半徑是__2.5__;若在△ABC中,AB=AC,BC=6,∠BAC=120,則△ABC的最小覆蓋圓的半徑是__3__. (3)如圖(2),用3個(gè)邊長(zhǎng)為1的正方形組成一個(gè)對(duì)稱(chēng)的圖形,求該圖形的最小覆蓋圓的半徑. 圖(2) 第16題圖 解:(1)作圖略 (3)如圖,設(shè)OB=a,則OC=2-a. ∵OA=OD,∠DCO=∠ABO=90, 第16題答圖 ∴12+a2=+(2-a)2, ∴a=, ∴OA= = =. 即該圖形最小覆蓋圓的半徑為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 九年級(jí)數(shù)學(xué)上冊(cè) 第3章 圓的基本性質(zhì) 3.3 垂徑定理2練習(xí) 新版浙教版 九年級(jí) 數(shù)學(xué) 上冊(cè) 基本 性質(zhì) 定理 練習(xí) 新版 浙教版
鏈接地址:http://www.820124.com/p-3354222.html