《2019高考數(shù)學二輪復習 專題七 概率與統(tǒng)計 第三講 正態(tài)分布、統(tǒng)計與統(tǒng)計案例學案 理.doc》由會員分享,可在線閱讀,更多相關《2019高考數(shù)學二輪復習 專題七 概率與統(tǒng)計 第三講 正態(tài)分布、統(tǒng)計與統(tǒng)計案例學案 理.doc(27頁珍藏版)》請在裝配圖網上搜索。
第三講 正態(tài)分布、統(tǒng)計與統(tǒng)計案例
考點一 正態(tài)分布
1.正態(tài)曲線的性質
(1)曲線位于x軸上方,與x軸不相交;曲線關于直線x=μ對稱,且在x=μ處達到峰值.
(2)曲線與x軸之間的面積為1.
(3)當μ一定時,曲線的形狀由σ確定,σ越小,曲線越“瘦高”,表示總體的分布越集中;σ越大,曲線越“矮胖”,表示總體的分布越分散.
2.正態(tài)分布X~N(μ,σ2)的三個常用數(shù)據(jù)
(1)P(μ-σ
P(X≤σ1),故B錯;
當t為任意正數(shù)時,由題圖可知P(X≤t)≥P(Y≤t),而P(X≤t)=1-P(X≥t),P(Y≤t)=1-P(Y≥t),
∴P(X≥t)≤P(Y≥t),
故C正確,D錯.
[答案] C
2.某校組織了“2017年第15屆希望杯數(shù)學競賽(第一試)”,已知此次選拔賽的數(shù)學成績X服從正態(tài)分布N(72,121)(單位:分),此次考生共有500人,估計數(shù)學成績在72分到83分之間的人數(shù)約為(參數(shù)數(shù)據(jù):P(μ-σ6.635,所以有99%的把握認為兩種生產方式的效率有差異.
(1)求回歸直線方程的關鍵
①正確理解計算,的公式和準確的計算,其中線性回歸方程必過樣本中心點(,).
②在分析兩個變量的相關關系時,可根據(jù)樣本數(shù)據(jù)作出散點圖來確定兩個變量之間是否具有相關關系,若具有線性相關關系,則可通過線性回歸方程估計和預測變量的值.
(2)獨立性檢驗的關鍵
根據(jù)22列聯(lián)表準確計算K2,若22列聯(lián)表沒有列出來,要先列出此表.K2的觀測值k越大,對應假設事件H0成立的概率越小,H0不成立的概率越大.
[對點訓練]
1.[角度1]某地隨著經濟的發(fā)展,居民收入逐年增長,該地一建設銀行連續(xù)五年的儲蓄存款(年底余額)如下表:
年份x
2011
2012
2013
2014
2015
儲蓄存款y/千億元
5
6
7
8
10
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,令t=x-2010,z=y(tǒng)-5得到下表:
時間代號t
1
2
3
4
5
z
0
1
2
3
5
(1)求z關于t的線性回歸方程;
(2)通過(1)中的方程,求出y關于x的回歸方程;
(3)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程=x+,其中=,=-)
[解] (1)令z關于t的線性回歸方程為=t+,
∵=3,=2.2,izi=45,=55,
==1.2,=-=2.2-31.2=-1.4,
∴=1.2t-1.4.
(2)將t=x-2010,z=y(tǒng)-5,代入=1.2t-1.4,
得-5=1.2(x-2010)-1.4,即=1.2x-2408.4.
(3)∵=1.22020-2408.4=15.6(千億元),
∴預測到2020年年底,該地儲蓄存款額可達15.6千億元.
2.[角度2]某市調研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人成績?yōu)閮?yōu)秀的概率為.
優(yōu)秀
非優(yōu)秀
合計
甲班
10
乙班
30
合計
110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績是否優(yōu)秀與班級有關系”.
參考公式與臨界值表:K2=.
P(K2≥k)
0.100
0.050
0.025
0.010
0.001
k
2.706
3.841
5.024
6.635
10.828
[解] (1)
優(yōu)秀
非優(yōu)秀
合計
甲班
10
50
60
乙班
20
30
50
合計
30
80
110
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到
K2=≈7.486<10.828.因此按99.9%的可靠性要求,不能認為“成績是否優(yōu)秀與班級有關系”.
1.(2017全國卷Ⅲ)某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖:
根據(jù)該折線圖,下列結論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
[解析] 折線圖呈現(xiàn)出的是一個逐漸上升的趨勢,但是并不是每個月都在增加,故A說法錯誤;折線圖中按照年份進行劃分,可以看出每年的游客量都在逐年增加,故B說法正確;折線圖中每年的高峰出現(xiàn)在每年的7,8月,故C說法正確;每年的1月至6月相對于7月至12月的波動性更小,變化的幅度較小,說明變化比較平穩(wěn),故D說法正確.
[答案] A
2.(2017山東卷)為了研究某班學生的腳長x(單位:厘米)和身高y(單位:厘米)的關系,從該班隨機抽取10名學生,根據(jù)測量數(shù)據(jù)的散點圖可以看出y與x之間有線性相關關系,設其回歸直線方程為=x+,已知i=225,i=1600,=4.該班某學生的腳長為24,據(jù)此估計其身高為( )
A.160 B.163 C.166 D.170
[解析] 由題意可得=22.5,=160,∴=160-422.5=70,即=4x+70.當x=24時,=424+70=166,故選C.
[答案] C
3.(2018江蘇卷)已知5位裁判給某運動員打出的分數(shù)的莖葉圖如圖所示,那么這5位裁判打出的分數(shù)的平均數(shù)為________.
[解析] 5位裁判打出的分數(shù)分別為89,89,90,91,91,則這5位裁判打出的分數(shù)的平均數(shù)為(89+89+90+91+91)=90.
[答案] 90
4.(2017全國卷Ⅱ)海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg),其頻率分布直方圖如下:
(1)設兩種養(yǎng)殖方法的箱產量相互獨立,記A表示事件“舊養(yǎng)殖法的箱產量低于50 kg,新養(yǎng)殖法的箱產量不低于50 kg”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:
箱產量<50 kg
箱產量≥50 kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產量的頻率分布直方圖,求新養(yǎng)殖法箱產量的中位數(shù)的估計值(精確到0.01).
附:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
K2=.
[解] (1)記B表示事件“舊養(yǎng)殖法的箱產量低于50 kg”,C表示事件“新養(yǎng)殖法的箱產量不低于50 kg”.
由題意知P(A)=P(BC)=P(B)P(C).
舊養(yǎng)殖法的箱產量低于50 kg的頻率為(0.012+0.014+0.024+0.034+0.040)5=0.62,
故P(B)的估計值為0.62.
新養(yǎng)殖法的箱產量不低于50 kg的頻率為(0.068+0.046+0.010+0.008)5=0.66,
故P(C)的估計值為0.66.
因此,事件A的概率估計值為0.620.66=0.4092.
(2)根據(jù)箱產量的頻率分布直方圖得列聯(lián)表
箱產量<50 kg
箱產量≥50 kg
舊養(yǎng)殖法
62
38
新養(yǎng)殖法
34
66
K2=≈15.705.
由于15.705>6.635,故有99%的把握認為箱產量與養(yǎng)殖方法有關.
(3)因為新養(yǎng)殖法的箱產量頻率分布直方圖中,箱產量低于50 kg的直方圖面積為(0.004+0.020+0.044)5=0.34<0.5,箱產量低于55 kg的直方圖面積為(0.004+0.020+0.044+0.068)5=0.68>0.5,故新養(yǎng)殖法箱產量的中位數(shù)的估計值為50+≈52.35(kg).
1.統(tǒng)計與統(tǒng)計案例在選擇或填空題中的命題熱點主要集中在隨機抽樣、用樣本估計總體以及變量間的相關性判斷等,難度較低,常出現(xiàn)在3~4題的位置.
2.統(tǒng)計的解答題多在第18或19題的位置,多以交匯性的形式考查,交匯點主要有兩種:頻率分布直方圖、莖葉圖擇一與隨機變量的分布列、數(shù)學期望、方差、正態(tài)分布相交匯考查;頻率分布直方圖、莖葉圖擇一與線性回歸或獨立性檢驗相交匯來考查,難度中等.
熱點課題19 概率與統(tǒng)計的交匯問題
[感悟體驗]
(2018河北衡水中學調研)某同學在研究性學習中,收集到某制藥廠今年前5個月甲膠囊生產產量(單位:萬盒)的數(shù)據(jù)如下表所示:
x(月份)
1
2
3
4
5
y(萬盒)
4
4
5
6
6
(1)該同學為了求出y關于x的線性回歸方程=x+,根據(jù)表中數(shù)據(jù)已經正確計算出=0.6,試求出的值,并估計該廠6月份生產的甲膠囊產量數(shù);
(2)若某藥店現(xiàn)有該制藥廠今年二月份生產的甲膠囊4盒和三月份生產的甲膠囊5盒,小紅同學從中隨機購買了3盒甲膠囊,后經了解發(fā)現(xiàn)該制藥廠今年二月份生產的所有甲膠囊均存在質量問題.記小紅同學所購買的3盒甲膠囊中存在質量問題的盒數(shù)為X,求X的分布列和數(shù)學期望.
[解] (1)由題可得,=(1+2+3+4+5)=3,=(4+4+5+6+6)=5.∵線性回歸方程=x+過點(,),∴=-=5-0.63=3.2.∴該廠6月份生產的甲膠囊的產量數(shù)為=0.66+3.2=6.8(萬盒).
(2)由題意知,X=0,1,2,3,
P(X=0)===,P(X=1)===,P(X=2)===,P(X=3)===,
所以X的分布列為
X
0
1
2
3
P
則E(X)=0+1+2+3=.
專題跟蹤訓練(三十)
一、選擇題
1.(2018長春市第一次質量監(jiān)測)已知某班級部分同學一次測驗的成績統(tǒng)計如圖所示,則其中位數(shù)和眾數(shù)分別為( )
A.95,94 B.92,86
C.99,86 D.95,91
[解析] 由題中莖葉圖可知,此組數(shù)據(jù)由小到大排列依次為76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17個,故中位數(shù)為92,出現(xiàn)次數(shù)最多的為眾數(shù),故眾數(shù)為86,故選B.
[答案] B
2.(2018黔東南州第一次聯(lián)考)近年呼吁高校招生改革的呼聲越來越高,在贊成高校招生改革的市民中按年齡分組,得到樣本頻率分布直方圖如圖所示,其中年齡在區(qū)間[30,40)內的有2500人,在區(qū)間[20,30)內的有1200人,則m的值為( )
A.0.013 B.0.13 C.0.012 D.0.12
[解析] 由題意,得年齡在區(qū)間[30,40)內的頻率為0.02510=0.25,則贊成高校招生改革的市民有=10000(人),因為年齡在區(qū)間[20,30)內的有1200人,所以m==0.012.
[答案] C
3.已知變量x與y正相關,且由觀測數(shù)據(jù)算得樣本平均數(shù)=3,=3.5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是( )
A.=0.4x+2.3 B.=2x-2.4
C.=-2x+9.5 D.=-0.3x+4.4
[解析] 變量x與y正相關,且樣本中心點為(3,3.5),應用排除法可知選項A符合要求.故選A.
[答案] A
4.(2018太原模擬)某小區(qū)有1000戶,各戶每月的用電量近似服從正態(tài)分布N(300,102),則用電量在320度以上的戶數(shù)約為(參考數(shù)據(jù):若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.74%)( )
A.17 B.23 C.34 D.46
[解析] P(ξ>320)=[1-P(280<ξ<320)]
=(1-95.44%)=0.0228,
0.02281000=22.8≈23,
∴用電量在320度以上的戶數(shù)約為23.故選B.
[答案] B
5.(2018廣東省百校聯(lián)盟第二次聯(lián)考)下表是我國某城市在2017年1月份至10月份期間各月最低溫度與最高溫度(單位:℃)的數(shù)據(jù)一覽表.
月份
1
2
3
4
5
6
7
8
9
10
最高溫
度/℃
5
9
9
11
17
24
27
30
31
21
最低溫
度/℃
-12
-3
1
-2
7
17
19
23
25
10
已知該城市的各月最低溫與最高溫具有相關關系,根據(jù)該一覽表,則下列結論錯誤的是( )
A.最低溫度與最高溫度為正相關
B.每月最高溫度與最低溫度的平均值在前8個月逐月增加
C.月溫差(最高溫度減最低溫度)的最大值出現(xiàn)在1月
D.1月至4月的月溫差(最高溫度減最低溫度)相對于7月至10月,波動性更大
[解析] 將最高溫度、最低溫度、溫差列表如下,
月份
1
2
3
4
5
6
7
8
9
10
最高溫
度/℃
5
9
9
11
17
24
27
30
31
21
最低溫
度/℃
-12
-3
1
-2
7
17
19
23
25
10
溫差
度/℃
17
12
8
13
10
7
8
7
6
11
由表格可知,最低溫度大致隨最高溫度的增大而增大,A正確;每月最高溫度與最低溫度的平均值在前8個月不是逐月增加,B錯;月溫差的最大值出現(xiàn)在1月,C正確;1月至4月的月溫差相對于7月至10月,波動性更大,D正確.故選B.
[答案] B
6.(2018贛州一模)以下四個命題中是真命題的為( )
①從勻速傳遞的產品生產流水線上,質檢員每20分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;③在回歸直線方程=0.2x+12中,當解釋變量x每增加一個單位時,預報變量y平均增加0.2個單位;④對分類變量X與Y,它們的隨機變量K2的觀測值k來說,k越小,“X與Y有關系”的把握程度越大.
A.①④ B.②④ C.①③ D.②③
[解析] ①為系統(tǒng)抽樣,故①不正確;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1,故②正確;③由0.2(x+1)+12-0.2x-12=0.2知③正確;④對分類變量X與Y,它們的隨機變量K2的觀測值k來說,k越大,“X與Y有關系”的把握程度越大,故④不正確.故選D.
[答案] D
二、填空題
7.(2018懷化二模)某校高三(1)班共有48人,學號依次為1,2,3,…,48,現(xiàn)用系統(tǒng)抽樣的方法抽取一個容量為6的樣本,已知學號為3,11,19,35,43的同學在樣本中,則還有一個同學的學號應為________.
[解析] 根據(jù)系統(tǒng)抽樣的規(guī)則——“等距離”抽取,則抽取的號碼差相等,易知相鄰兩個學號之間的差為11-3=8,所以在19與35之間還有27.
[答案] 27
8.(2018安徽淮北模擬)某單位員工按年齡分為A,B,C三組,其人數(shù)之比為5∶4∶1,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,已知C組中甲、乙二人均被抽到的概率是,則該單位員工總數(shù)為________.
[解析] ∵員工按年齡分為A,B,C三組,其人數(shù)之比為5∶4∶1,∴從中抽取一個容量為20的樣本,則抽取的C組人數(shù)為20=20=2,設C組員工總數(shù)為m,則甲、乙二人均被抽到的概率為==,即m(m-1)=90,解得m=10.設員工總數(shù)為x,則由==,可得x=100.
[答案] 100
9.某公司為確定明年投入某產品的廣告支出,對近5年的年廣告支出m與年銷售額t(單位:百萬元)進行了初步統(tǒng)計,得到下列表格中的數(shù)據(jù):
年廣告支出m
2
4
5
6
8
年銷售額t
30
40
p
50
70
經測算,年廣告支出m與年銷售額t滿足線性回歸方程=6.5m+17.5,則p=________.
[解析] 由于回歸直線過樣本點的中心,=5,=,代入=6.5m+17.5,解得p=60.
[答案] 60
三、解答題
10.(2018河南新鄉(xiāng)一模)為了了解甲、乙兩個工廠生產的輪胎的寬度是否達標,從兩廠各隨機選取了10個輪胎,將每個輪胎的寬度(單位:mm)記錄下來并繪制出如下的折線圖:
(1)分別計算甲、乙兩廠提供的10個輪胎寬度的平均值;
(2)若輪胎的寬度在[194,196]內,則稱這個輪胎是標準輪胎.試比較甲、乙兩廠分別提供的10個輪胎中所有標準輪胎寬度的方差的大小,根據(jù)兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個的輪胎相對更好.
[解] (1)甲廠10個輪胎寬度的平均值:
甲=(195+194+196+193+194+197+196+195+193+197)=195(mm),
乙廠10個輪胎寬度的平均值:乙=(195+196+193+192+195+194+195+192+195+193)=194(mm).
(2)甲廠10個輪胎中寬度在[194,196]內的數(shù)據(jù)為195,194,196,194,196,195,
平均數(shù):1=(195+194+196+194+196+195)=195,
方差;s=[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=,
乙廠10個輪胎中寬度在[194,196]內的數(shù)據(jù)為195,196,195,194,195,195,
平均數(shù):2=(195+196+195+194+195+195)=195,
方差:s=[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=,
∵兩廠標準輪胎寬度的平均數(shù)相等,但乙廠的方差更小,
∴乙廠的輪胎相對更好.
11.(2018河北石家莊二模)隨著網絡的發(fā)展,網上購物越來越受到人們的喜愛,各大購物網站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網站2017年1~8月促銷費用x(萬元)和產品銷量y(萬件)的具體數(shù)據(jù):
月份
1
2
3
4
5
6
7
8
促銷費用x
2
3
6
10
13
21
15
18
產品銷量y
1
1
2
3
3.5
5
4
4.5
(1)根據(jù)數(shù)據(jù)可知y與x具有線性相關關系,請建立y關于x的回歸方程=x+(系數(shù)精確到0.01);
(2)已知6月份該購物網站為慶祝成立1周年,特制訂獎勵制度:用z(單位:件)表示日銷量,若z∈[1800,2000),則每位員工每日獎勵100元;若z∈[2000,2100),則每位員工每日獎勵150元;若z∈[2100,+∞),則每位員工每日獎勵200元.現(xiàn)已知該網站6月份日銷量z服從正態(tài)分布N(2000,10000),請你計算某位員工當月獎勵金額總數(shù)大約為多少元.(當月獎勵金額總數(shù)精確到百分位)
參考數(shù)據(jù):xiyi=338.5,x=1308,其中xi,yi分別為第i個月的促銷費用和產品銷量,i=1,2,3,…,8.
參考公式:①對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸方程=x+的斜率和截距的最小二乘估計分別為=,=-.
②若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ-σ
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網址水印。
- 3、該文檔所得收入(下載+內容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
2019高考數(shù)學二輪復習
專題七
概率與統(tǒng)計
第三講
正態(tài)分布、統(tǒng)計與統(tǒng)計案例學案
2019
高考
數(shù)學
二輪
復習
專題
概率
統(tǒng)計
三講
正態(tài)分布
案例
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.820124.com/p-3405725.html