資料編號(hào):A5-0530;
資料名稱:汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)[汽車];
資料詳情:資料包括Word文檔和CAD圖紙,具體如下:
文檔包括: 說明書一份,41頁,14100字左右. 圖紙共2張: A0-齒輪齒條轉(zhuǎn)向器.dwg A0-轉(zhuǎn)向操縱機(jī)構(gòu).
dwg ;
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(jì)(論文)
摘要
汽車轉(zhuǎn)向系統(tǒng)可按轉(zhuǎn)向的能源不同分為機(jī)械轉(zhuǎn)向系統(tǒng)和動(dòng)力轉(zhuǎn)向系統(tǒng)兩類。
汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)是一種新型的汽車動(dòng)力轉(zhuǎn)向系統(tǒng),與傳統(tǒng)液壓轉(zhuǎn)向系統(tǒng)相比,采用電動(dòng)機(jī)直接提供助力,具有多方面優(yōu)越性。近年來已有很多中高檔汽車配備了動(dòng)力轉(zhuǎn)向系統(tǒng)裝置,EPS研究也成為汽車工業(yè)的熱門課題之一,具有重要研究價(jià)值和巨大潛在應(yīng)用前景。
在本文中重點(diǎn)進(jìn)行齒輪齒條轉(zhuǎn)向器的設(shè)計(jì)計(jì)算和對(duì)轉(zhuǎn)向齒輪軸的校核,及轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)。主要方法和理論采用汽車設(shè)計(jì)的經(jīng)驗(yàn)參數(shù)和大學(xué)所學(xué)機(jī)械設(shè)計(jì)的課程內(nèi)容進(jìn)行設(shè)計(jì),并做了歸納和總結(jié)。
關(guān)鍵詞 轉(zhuǎn)向系統(tǒng);電動(dòng)助力轉(zhuǎn)向系統(tǒng);齒輪齒條轉(zhuǎn)向器;優(yōu)化設(shè)計(jì)
-I-
Abstract
The steering system can be divided into mechanical energy and power steering system.
Electric power steering system is a new type of vehicle power steering system, compared with traditional hydraulic steering systems, directly with the motor power, has many advantages. In recent years, many in the luxury car have been equipped with a power steering system device, EPS studies have become a hot topic in automotive industry, great research value and great potential applications.
This article focus on the design of the rack and pinion steering gear shaft calculation and verification, and optimization of steering linkage. The main methods and theories of experience with automotive design parameters and the university curriculum in mechanical design to design, and made and summarized.
Key words Steering System;Electric Power Steering ;
Rack and pinion steering;Optimization
-II-
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(jì)(論文)
摘要
汽車轉(zhuǎn)向系統(tǒng)可按轉(zhuǎn)向的能源不同分為機(jī)械轉(zhuǎn)向系統(tǒng)和動(dòng)力轉(zhuǎn)向系統(tǒng)兩類。
汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)是一種新型的汽車動(dòng)力轉(zhuǎn)向系統(tǒng),與傳統(tǒng)液壓轉(zhuǎn)向系統(tǒng)相比,采用電動(dòng)機(jī)直接提供助力,具有多方面優(yōu)越性。近年來已有很多中高檔汽車配備了動(dòng)力轉(zhuǎn)向系統(tǒng)裝置,EPS研究也成為汽車工業(yè)的熱門課題之一,具有重要研究價(jià)值和巨大潛在應(yīng)用前景。
在本文中重點(diǎn)進(jìn)行齒輪齒條轉(zhuǎn)向器的設(shè)計(jì)計(jì)算和對(duì)轉(zhuǎn)向齒輪軸的校核,及轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)。主要方法和理論采用汽車設(shè)計(jì)的經(jīng)驗(yàn)參數(shù)和大學(xué)所學(xué)機(jī)械設(shè)計(jì)的課程內(nèi)容進(jìn)行設(shè)計(jì),并做了歸納和總結(jié)。
關(guān)鍵詞 轉(zhuǎn)向系統(tǒng);電動(dòng)助力轉(zhuǎn)向系統(tǒng);齒輪齒條轉(zhuǎn)向器;優(yōu)化設(shè)計(jì)
-I-
Abstract
The steering system can be divided into mechanical energy and power steering system.
Electric power steering system is a new type of vehicle power steering system, compared with traditional hydraulic steering systems, directly with the motor power, has many advantages. In recent years, many in the luxury car have been equipped with a power steering system device, EPS studies have become a hot topic in automotive industry, great research value and great potential applications.
This article focus on the design of the rack and pinion steering gear shaft calculation and verification, and optimization of steering linkage. The main methods and theories of experience with automotive design parameters and the university curriculum in mechanical design to design, and made and summarized.
Key words Steering System;Electric Power Steering ;
Rack and pinion steering;Optimization
-II-
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(jì)(論文)
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 汽車轉(zhuǎn)向系統(tǒng)簡介 1
1.1.1 轉(zhuǎn)向系的設(shè)計(jì)要求 1
1.2 EPS的特點(diǎn)及發(fā)展現(xiàn)狀 2
1.2.1 EPS與其他系統(tǒng)比較 2
1.2.2 EPS的特點(diǎn) 2
1.2.3 EPS在國內(nèi)外的應(yīng)用狀況 3
1.3 本課題的研究意義 4
第2章 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的總體組成 5
2.1 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的機(jī)理及類型 5
2.1.1 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的機(jī)理 5
2.1.2 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的類型 7
2.2 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件 9
2.2.1 扭矩傳感器 9
2.2.2 車速傳感器 9
2.2.3 電動(dòng)機(jī) 9
2.2.4 減速機(jī)構(gòu) 10
2.2.5 電子控制單元 10
2.3 電動(dòng)助力轉(zhuǎn)向的助力特性 11
第3章 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì) 12
3.1 對(duì)動(dòng)力轉(zhuǎn)向機(jī)構(gòu)的要求 12
3.2 齒輪齒條轉(zhuǎn)向器的設(shè)計(jì)與計(jì)算 12
3.2.1 轉(zhuǎn)向系計(jì)算載荷的確定 13
3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì) 14
3.2.3 齒輪齒條轉(zhuǎn)向器轉(zhuǎn)向橫拉桿的運(yùn)動(dòng)分析 22
3.2.4 齒輪齒條傳動(dòng)受力分析 24
3.2.5 齒輪軸的強(qiáng)度校核 24
第4章 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì) 29
4.1 結(jié)構(gòu)與布置 29
4.2 用解析法求內(nèi)、外輪轉(zhuǎn)角關(guān)系 30
4.3 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì) 32
4.3.1 目標(biāo)函數(shù)的建立 32
4.3.2 設(shè)計(jì)變量與約束條件 33
4.4 研究結(jié)論 36
結(jié)論 37
致謝 39
參考文獻(xiàn) 40
附錄1 41
附錄2 46
-1-
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(jì)(論文)
摘要
汽車轉(zhuǎn)向系統(tǒng)可按轉(zhuǎn)向的能源不同分為機(jī)械轉(zhuǎn)向系統(tǒng)和動(dòng)力轉(zhuǎn)向系統(tǒng)兩類。
汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)是一種新型的汽車動(dòng)力轉(zhuǎn)向系統(tǒng),與傳統(tǒng)液壓轉(zhuǎn)向系統(tǒng)相比,采用電動(dòng)機(jī)直接提供助力,具有多方面優(yōu)越性。近年來已有很多中高檔汽車配備了動(dòng)力轉(zhuǎn)向系統(tǒng)裝置,EPS研究也成為汽車工業(yè)的熱門課題之一,具有重要研究價(jià)值和巨大潛在應(yīng)用前景。
在本文中重點(diǎn)進(jìn)行齒輪齒條轉(zhuǎn)向器的設(shè)計(jì)計(jì)算和對(duì)轉(zhuǎn)向齒輪軸的校核,及轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)。主要方法和理論采用汽車設(shè)計(jì)的經(jīng)驗(yàn)參數(shù)和大學(xué)所學(xué)機(jī)械設(shè)計(jì)的課程內(nèi)容進(jìn)行設(shè)計(jì),并做了歸納和總結(jié)。
關(guān)鍵詞 轉(zhuǎn)向系統(tǒng);電動(dòng)助力轉(zhuǎn)向系統(tǒng);齒輪齒條轉(zhuǎn)向器;優(yōu)化設(shè)計(jì)
-I-
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(jì)(論文)
Abstract
The steering system can be divided into mechanical energy and power steering system.
Electric power steering system is a new type of vehicle power steering system, compared with traditional hydraulic steering systems, directly with the motor power, has many advantages. In recent years, many in the luxury car have been equipped with a power steering system device, EPS studies have become a hot topic in automotive industry, great research value and great potential applications.
This article focus on the design of the rack and pinion steering gear shaft calculation and verification, and optimization of steering linkage. The main methods and theories of experience with automotive design parameters and the university curriculum in mechanical design to design, and made and summarized.
Key words Steering System;Electric Power Steering ;
Rack and pinion steering;Optimization
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 汽車轉(zhuǎn)向系統(tǒng)簡介 1
1.1.1 轉(zhuǎn)向系的設(shè)計(jì)要求 1
1.2 EPS的特點(diǎn)及發(fā)展現(xiàn)狀 2
1.2.1 EPS與其他系統(tǒng)比較 2
1.2.2 EPS的特點(diǎn) 2
1.2.3 EPS在國內(nèi)外的應(yīng)用狀況 3
1.3 本課題的研究意義 4
第2章 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的總體組成 5
2.1 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的機(jī)理及類型 5
2.1.1 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的機(jī)理 5
2.1.2 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的類型 7
2.2 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件 9
2.2.1 扭矩傳感器 9
2.2.2 車速傳感器 9
2.2.3 電動(dòng)機(jī) 9
2.2.4 減速機(jī)構(gòu) 10
2.2.5 電子控制單元 10
2.3 電動(dòng)助力轉(zhuǎn)向的助力特性 11
第3章 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì) 12
3.1 對(duì)動(dòng)力轉(zhuǎn)向機(jī)構(gòu)的要求 12
3.2 齒輪齒條轉(zhuǎn)向器的設(shè)計(jì)與計(jì)算 12
3.2.1 轉(zhuǎn)向系計(jì)算載荷的確定 13
3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì) 14
3.2.3 齒輪齒條轉(zhuǎn)向器轉(zhuǎn)向橫拉桿的運(yùn)動(dòng)分析 22
3.2.4 齒輪齒條傳動(dòng)受力分析 24
3.2.5 齒輪軸的強(qiáng)度校核 24
第4章 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì) 29
4.1 結(jié)構(gòu)與布置 29
4.2 用解析法求內(nèi)、外輪轉(zhuǎn)角關(guān)系 30
4.3 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì) 32
4.3.1 目標(biāo)函數(shù)的建立 32
4.3.2 設(shè)計(jì)變量與約束條件 33
4.4 研究結(jié)論 36
結(jié)論 37
致謝 39
參考文獻(xiàn) 40
附錄1 41
附錄2 46
-V-
哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(jì)(論文)
第1章 緒論
1.1 汽車轉(zhuǎn)向系統(tǒng)簡介
汽車轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機(jī)構(gòu),在汽車轉(zhuǎn)向行駛時(shí),保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。它由轉(zhuǎn)向操縱機(jī)構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)組成。
轉(zhuǎn)向系統(tǒng)作為汽車的一個(gè)重要組成部分,其性能的好壞將直接影響到汽車的轉(zhuǎn)向特性、穩(wěn)定性、和行駛安全性。目前汽車轉(zhuǎn)向技術(shù)主要有七大類:手動(dòng)轉(zhuǎn)向技術(shù)(MS)、液壓助力轉(zhuǎn)向技術(shù)(HPS)、電控液壓助力轉(zhuǎn)向技術(shù)(ECHPS)、電動(dòng)助力轉(zhuǎn)向技術(shù)(EPS)、四輪轉(zhuǎn)向技術(shù)(4WS)、主動(dòng)前輪轉(zhuǎn)向技術(shù)(AFS)和線控轉(zhuǎn)向技術(shù)(SBW)。轉(zhuǎn)向系統(tǒng)市場上以HPS、ECHPS、EPS應(yīng)用為主。電動(dòng)助力轉(zhuǎn)向具有節(jié)約燃料、有利于環(huán)境、可變力轉(zhuǎn)向、易實(shí)現(xiàn)產(chǎn)品模塊化等優(yōu)點(diǎn),是一項(xiàng)緊扣當(dāng)今汽車發(fā)展主題的新技術(shù),他是目前國內(nèi)轉(zhuǎn)向技術(shù)的研究熱點(diǎn)。
1.1.1 轉(zhuǎn)向系的設(shè)計(jì)要求
(1) 汽車轉(zhuǎn)彎行駛時(shí),全部車輪應(yīng)繞瞬時(shí)轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿足這項(xiàng)要求會(huì)加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
(2) 汽車轉(zhuǎn)型行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動(dòng)返回到直線行駛位置,并穩(wěn)定行駛。
(3) 汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生共振,轉(zhuǎn)向盤沒有擺動(dòng)。
(4) 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)和懸架導(dǎo)向裝置共同工作時(shí),由于運(yùn)動(dòng)不協(xié)調(diào)使車輪產(chǎn)生的擺動(dòng)應(yīng)最小。
(5) 保證汽車有較高的機(jī)動(dòng)性,具有迅速和小轉(zhuǎn)彎行駛能力。
(6) 操縱輕便。
(7) 轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。
(8) 轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機(jī)構(gòu)。
(9) 在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時(shí),轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。
(10) 進(jìn)行運(yùn)動(dòng)校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動(dòng)方向一致。
1.2 EPS的特點(diǎn)及發(fā)展現(xiàn)狀
1.2.1 EPS與其他系統(tǒng)比較
對(duì)于電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)(EPS),電動(dòng)機(jī)僅在汽車轉(zhuǎn)向時(shí)才工作并消耗蓄電池能量;而對(duì)于常流式液壓動(dòng)力轉(zhuǎn)向機(jī)構(gòu),因液壓泵處于長期工作狀態(tài)和內(nèi)泄漏等原因要消耗較多的能量。兩者比較,電動(dòng)助力轉(zhuǎn)向的燃料消耗率僅為液壓動(dòng)力轉(zhuǎn)向的16%~20%。
液壓動(dòng)力轉(zhuǎn)向機(jī)構(gòu)的工作介質(zhì)是油,任何部位出現(xiàn)漏油,油壓將建立不起來,不僅失去助力效能,并對(duì)環(huán)境造成污染。當(dāng)發(fā)動(dòng)機(jī)出現(xiàn)故障停止工作時(shí),液壓泵也不工作,結(jié)果也會(huì)喪失助力效能,這就降低了工作可靠性。電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)不存在漏油的問題,只要蓄電池內(nèi)有電提供給電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu),就能有助力作用,所以工作可靠。若液壓動(dòng)力轉(zhuǎn)向機(jī)構(gòu)的油路進(jìn)入空氣或者貯油罐油面過低,工作時(shí)將產(chǎn)生較大噪聲,在排除氣體之前會(huì)影響助力效果;而電動(dòng)助力轉(zhuǎn)向僅在電動(dòng)機(jī)工作時(shí)有輕微的噪聲。
電動(dòng)助力轉(zhuǎn)向與液壓動(dòng)力轉(zhuǎn)向比較,轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí)僅需克服轉(zhuǎn)向器的摩擦阻力,不存在回位彈簧阻力和反映路感的油壓阻力。電動(dòng)助力轉(zhuǎn)向還有整體結(jié)構(gòu)緊湊、部件少、占用的空間尺寸小、質(zhì)量比液壓動(dòng)力轉(zhuǎn)向約輕20%~25%以及汽車上容易布置等優(yōu)點(diǎn)。
1.2.2 EPS的特點(diǎn)
(1)EPS節(jié)能環(huán)保。
由于發(fā)動(dòng)機(jī)運(yùn)轉(zhuǎn)時(shí),液壓泵始終處于工作狀態(tài),液壓轉(zhuǎn)向系統(tǒng)使整個(gè)發(fā)動(dòng)機(jī)燃油消耗量增加了3%~5%,而EPS以蓄電池為能源,以電機(jī)為動(dòng)力元件,可獨(dú)立于發(fā)動(dòng)機(jī)工作,EPS幾乎不直接消耗發(fā)動(dòng)機(jī)燃油。EPS不存在液壓動(dòng)力轉(zhuǎn)向系統(tǒng)的燃油泄漏問題,EPS通過電子控制,對(duì)環(huán)境幾乎沒有污染。
(2)EPS裝配方便。
EPS的主要部件可以集成在一起,易于布置,與液壓動(dòng)力轉(zhuǎn)向相比減少了許多原件,沒有液壓系統(tǒng)所需要的油泵、油管、壓力流量控制閥、儲(chǔ)油罐等,原件數(shù)目少,裝配方便,節(jié)約時(shí)間。
(3)EPS效率高。
液壓動(dòng)力轉(zhuǎn)向系統(tǒng)效率一般在60%~70%,而EPS得效率較高,可高達(dá)90%以上。
(4)EPS路感好。
傳統(tǒng)純液壓動(dòng)力轉(zhuǎn)向系大多采用固定放大倍數(shù),工作驅(qū)動(dòng)力大,但卻不能實(shí)現(xiàn)汽車在各種車速下駕駛時(shí)的輕便性和路感。而EPS系統(tǒng)的滯后性可以通過EPS控制器的軟件加以補(bǔ)償,是汽車在各種速度下都能得到滿意的轉(zhuǎn)向助力。
(5)EPS回正性好。
EPS系統(tǒng)結(jié)構(gòu)簡單,不僅操作簡便,還可以通過調(diào)整EPS控制器的軟件,得到最佳的回正性,從而改善汽車的操縱穩(wěn)定性和舒適性。
(6)動(dòng)力性。
EPS系統(tǒng)可隨車速的高低主動(dòng)分配轉(zhuǎn)向力,不直接消耗發(fā)動(dòng)機(jī)功率,只在轉(zhuǎn)向時(shí)才起助力作用,保障發(fā)動(dòng)機(jī)充足動(dòng)力。(不像HPS液壓系統(tǒng),即使在不轉(zhuǎn)向時(shí),油泵也一直運(yùn)轉(zhuǎn)處于工作狀態(tài),降低了使用壽命)
1.2.3 EPS在國內(nèi)外的應(yīng)用狀況
國外EPS的發(fā)展之路:
因?yàn)槲⑿娃I車上狹小的發(fā)動(dòng)機(jī)艙空間給液壓助力轉(zhuǎn)向系統(tǒng)的安裝帶來了很大的麻煩,而EPS原件比較少,重量輕,裝配方便,比較適合在微型轎車上安裝。因此在國外,EPS系統(tǒng)首先是在微型轎車上發(fā)展起來的。
上世紀(jì)80年代初期,日本鈴木公司首次在其Cervo轎車上安裝了EPS系統(tǒng),隨后還應(yīng)用在其Alto車上。此后,EPS在日本得到迅速發(fā)展。出于節(jié)能環(huán)保的考慮,歐、美等國的汽車公司也相繼對(duì)EPS進(jìn)行了開發(fā)和研究。雖然比日本晚了十年時(shí)間,但是歐美國家的開發(fā)力度比較大,所選擇的產(chǎn)品類型也有所不同。日本起初選擇了技術(shù)相對(duì)成熟的有刷電機(jī)。
有刷電機(jī)比較成熟,在汽車上的應(yīng)用較廣,比如雨刷、車窗等部分,稍作改進(jìn)就適應(yīng)了EPS的要求,因此研發(fā)周期較短,上世紀(jì)80年代末期就開始產(chǎn)業(yè)化,主要裝配在微型車上。而歐美則選擇了難度較大的無刷電機(jī),但是電子控制系統(tǒng)比較復(fù)雜,延長了研發(fā)周期。直到90年代中期歐美才開始量產(chǎn)。從長遠(yuǎn)發(fā)展看,有刷電機(jī)存在一定弊端,比如電機(jī)產(chǎn)生的噪聲較難克服,磨損較嚴(yán)重,存在電磁干擾等問題。因此,日本現(xiàn)在國內(nèi)裝配的EPS也逐漸轉(zhuǎn)向無刷電機(jī)了。
國內(nèi)EPS的發(fā)展現(xiàn)狀:
我國汽車電子行業(yè)的總體發(fā)展相對(duì)滯后,但是,隨著汽車對(duì)環(huán)保、節(jié)能和安全性要求的進(jìn)一步提高,代表著現(xiàn)代汽車轉(zhuǎn)向系統(tǒng)的發(fā)展方向的EPS電動(dòng)助力轉(zhuǎn)向系統(tǒng)已被我國列為高新科技產(chǎn)業(yè)項(xiàng)目之一,國內(nèi)各大院校、科研機(jī)構(gòu)和企業(yè)在進(jìn)行EPS技術(shù)的研究,也有少數(shù)供應(yīng)商能批量提供轉(zhuǎn)向軸式的EPS系統(tǒng)。但總的來講目前國內(nèi)EPS技術(shù)還不成熟;供應(yīng)商所提供的EPS系統(tǒng)還未達(dá)到產(chǎn)品級(jí)的要求,且類型單一,還不能滿足整車廠需要。據(jù)悉,自主品牌研發(fā)的EPS系統(tǒng)離產(chǎn)業(yè)化就差整車廠批量裝車認(rèn)可這一臺(tái)階了,相信很快就可以實(shí)現(xiàn)量產(chǎn)。EPS系統(tǒng)是未來動(dòng)力轉(zhuǎn)向系統(tǒng)的一個(gè)發(fā)展趨勢(shì)。
1.3 本課題的研究意義
隨著科技的發(fā)展和人們生活水平及環(huán)保意識(shí)的提高,汽車轉(zhuǎn)向助力肯定會(huì)向更輕便、更節(jié)能、更安全的方向發(fā)展,而本課題正是沿著這個(gè)方向?qū)ζ嚨霓D(zhuǎn)向系統(tǒng)進(jìn)行了研究?,F(xiàn)存的汽車,大部分都是傳統(tǒng)液壓助力轉(zhuǎn)向系統(tǒng),甚至沒有助力轉(zhuǎn)向系統(tǒng),電動(dòng)助力轉(zhuǎn)向系統(tǒng)能提供比其更安全、更舒適的轉(zhuǎn)向操控性和節(jié)能效果。本課題對(duì)該系統(tǒng)的進(jìn)行了深入的研究,并將其應(yīng)用于實(shí)踐,這對(duì)于推動(dòng)該系統(tǒng)的發(fā)展和最終的產(chǎn)品化應(yīng)用,對(duì)于推動(dòng)機(jī)械、傳感器技術(shù)和電子器件制造等相關(guān)產(chǎn)業(yè)的發(fā)展,對(duì)于提高我國汽車電子化水平和加快轉(zhuǎn)向系統(tǒng)產(chǎn)業(yè)化發(fā)展具有十分重要的意義。
在可預(yù)見的將來,電動(dòng)助力轉(zhuǎn)向系統(tǒng)在汽車領(lǐng)域必定會(huì)有廣泛的應(yīng)用。
本章小結(jié)
這一章介紹了現(xiàn)在應(yīng)用的汽車轉(zhuǎn)向技術(shù),并對(duì)電動(dòng)助力轉(zhuǎn)向系統(tǒng)和液壓助力轉(zhuǎn)向系統(tǒng)進(jìn)行了分析比較。還闡述了EPS的國內(nèi)外發(fā)展?fàn)顩r。
第2章 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的總體組成
2.1 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的機(jī)理及類型
近年來,電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)在乘用車上得到應(yīng)用,并有良好的發(fā)展前景。電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu),除去應(yīng)當(dāng)滿足對(duì)液壓式動(dòng)力轉(zhuǎn)向機(jī)構(gòu)機(jī)構(gòu)的一些相似要求以外,同時(shí)還應(yīng)當(dāng)滿足:具有故障自診斷和報(bào)警功能;有良好的抗振動(dòng)和抗干擾能力等;當(dāng)?shù)孛媾c車輪之間有反向沖擊力作用時(shí),電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)應(yīng)迅速反應(yīng),制止轉(zhuǎn)向盤轉(zhuǎn)動(dòng);在過載使用條件下有過載保護(hù)功能等。
2.1.1 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的機(jī)理
電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)由機(jī)械轉(zhuǎn)向器與電動(dòng)助力部分相結(jié)合構(gòu)成。電動(dòng)助力部分包括電動(dòng)機(jī)、電池、傳感器和控制器(ECU)及線束,有的還有減速機(jī)構(gòu)和電磁離合器等(圖2-1)
圖2-1 電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)示意圖
目前用于乘用車的電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)的轉(zhuǎn)向器,均采用齒輪齒條式轉(zhuǎn)向器。其功能除用來傳遞來自轉(zhuǎn)向盤的力矩與運(yùn)動(dòng)以外,還有增扭、降速作用。轉(zhuǎn)向過程中,電動(dòng)機(jī)將來自蓄電池的電能轉(zhuǎn)變?yōu)闄C(jī)械能向轉(zhuǎn)向系輸出而構(gòu)成轉(zhuǎn)向助力矩,并完成助力作用。與電動(dòng)機(jī)連接的減速機(jī)構(gòu)有蝸輪蝸桿、滾珠螺桿螺母或行星齒輪機(jī)構(gòu)等,其作用也是降速、增扭。裝在減速機(jī)構(gòu)附近的離合器(通常為電磁離合器)是為了保證電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)只在預(yù)先設(shè)定的行駛速度范圍內(nèi)工作。在車速達(dá)到某一設(shè)定值時(shí),離合器分離,并暫時(shí)停止電動(dòng)機(jī)的助力作用。與此同時(shí),轉(zhuǎn)向機(jī)構(gòu)也暫時(shí)轉(zhuǎn)為機(jī)械式轉(zhuǎn)向機(jī)構(gòu)。當(dāng)電動(dòng)機(jī)發(fā)生故障時(shí),離合器也自動(dòng)分離。離合器分離后再行轉(zhuǎn)向時(shí),可不必因帶動(dòng)電動(dòng)機(jī)而消耗駕駛員體力。單片式電磁離合器包括主動(dòng)輪、從動(dòng)軸、壓盤、磁化線圈和滑環(huán)等。
1.主動(dòng)輪 2.磁化線圈 3.壓盤 4.花鍵
5.從動(dòng)軸 6軸承 7滑環(huán) 8電動(dòng)機(jī)
圖2-2 電磁離合器工作原理簡圖
其工作原理如圖所示,裝有磁化線圈2的主動(dòng)輪1與電動(dòng)機(jī)軸固定連接,來自控制器的控制電流經(jīng)滑環(huán)7輸入磁化線圈,于是主動(dòng)輪產(chǎn)生電磁吸力,將壓盤3吸到主動(dòng)輪上,然后電動(dòng)機(jī)的動(dòng)力經(jīng)主動(dòng)輪、壓盤及壓盤轂上的花鍵傳給從動(dòng)軸5,實(shí)現(xiàn)助力作用。
汽車以較高車速轉(zhuǎn)向行駛,作用在轉(zhuǎn)向盤上的力矩將減小,以至于達(dá)到無需助力的程度,此時(shí)可設(shè)定:達(dá)到此車速時(shí),電磁離合器停止工作。還有,在電動(dòng)機(jī)停止工作以后,電磁離合器在控制器的控制下也要分離或者自動(dòng)分離。此后,在進(jìn)行再進(jìn)行轉(zhuǎn)向?qū)⒉淮嬖谥ψ饔?,直至電?dòng)機(jī)恢復(fù)工作為止。
電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)的工作原理如下:
當(dāng)駕駛員對(duì)轉(zhuǎn)向盤施力并轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí),位于轉(zhuǎn)向盤下方與轉(zhuǎn)向軸連接的轉(zhuǎn)矩傳感器將經(jīng)扭桿彈簧連接在一起的上、下轉(zhuǎn)向軸的相對(duì)轉(zhuǎn)動(dòng)角位移信號(hào)轉(zhuǎn)變?yōu)殡娦盘?hào)傳至控制器,在同一時(shí)刻車速信號(hào)也傳至控制器。根據(jù)以上兩信號(hào),控制器確定電動(dòng)機(jī)的旋轉(zhuǎn)方向和助力轉(zhuǎn)矩的大小。之后,控制器將輸出的數(shù)字量經(jīng)D/A轉(zhuǎn)換器,轉(zhuǎn)換為模擬量,并將其輸入電流控制電路。電流控制電路將來自微機(jī)的電流命令值同電動(dòng)機(jī)電流的實(shí)際值進(jìn)行比較后生成一個(gè)差值信號(hào),同時(shí)將此信號(hào)送往電動(dòng)機(jī)驅(qū)動(dòng)電路,該電路驅(qū)動(dòng)電動(dòng)機(jī),并向電動(dòng)機(jī)提供控制電流,完成助力轉(zhuǎn)向作用。
2.1.2 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的類型
EPS系統(tǒng)依據(jù)電動(dòng)機(jī)布置位置的不同可分為轉(zhuǎn)向軸助力式、小齒輪助力式、齒條助力式三個(gè)基本類型(圖2-3)
a) b) c)
a) 轉(zhuǎn)向軸助力式 b) 齒輪助力式 c) 齒條助力式
圖2-3 EPS系統(tǒng)的類型
(1) 轉(zhuǎn)向軸助力式 轉(zhuǎn)向軸助力式電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)的電動(dòng)機(jī)布置在靠近轉(zhuǎn)向盤下方,并經(jīng)蝸輪蝸桿機(jī)構(gòu)與轉(zhuǎn)向軸連接(圖2-3a)。這種布置方案的特點(diǎn)是:
由于轉(zhuǎn)向軸助力式電動(dòng)助力轉(zhuǎn)向的電動(dòng)機(jī)布置在駕駛室內(nèi),所以有良好的工作條件;因電動(dòng)機(jī)輸出的助力轉(zhuǎn)矩經(jīng)過減速機(jī)構(gòu)增大后傳給轉(zhuǎn)向軸,所以電動(dòng)機(jī)輸出的助力轉(zhuǎn)矩相對(duì)小些,電動(dòng)機(jī)尺寸也小,這又有利于在車上布置和減輕質(zhì)量;電動(dòng)機(jī)、轉(zhuǎn)矩傳感器、減速機(jī)構(gòu)、電磁離合器等裝為一體是結(jié)構(gòu)緊湊,上述部件又與轉(zhuǎn)向器分開,故拆裝與維修工作容易進(jìn)行;轉(zhuǎn)向器仍然可以采用通用的典型結(jié)構(gòu)齒輪齒條式轉(zhuǎn)向器;電動(dòng)機(jī)距駕駛員和轉(zhuǎn)向盤近,電動(dòng)機(jī)的工作噪聲和振動(dòng)直接影響駕駛員;轉(zhuǎn)向軸等零件也要承受來自電動(dòng)機(jī)輸出的助力轉(zhuǎn)矩的作用,為使其強(qiáng)度足夠,必須增大受載件的尺寸;盡管電動(dòng)機(jī)的尺寸不大,但因這種布置方案的電動(dòng)機(jī)靠近方向盤,為了不影響駕駛員腿部的動(dòng)作,在布置時(shí)仍然有一定的困難。
(2)齒輪助力式 齒輪助力式電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)的電動(dòng)機(jī)布置在與轉(zhuǎn)向器主動(dòng)齒輪相連接的位置(圖2-3b),并通過驅(qū)動(dòng)主動(dòng)齒輪實(shí)現(xiàn)助力。這種布置方案的特點(diǎn)是:
電動(dòng)機(jī)布置在地板下方、轉(zhuǎn)向器上部,工作條件比較差對(duì)密封要求較高;電動(dòng)機(jī)的助力轉(zhuǎn)矩基于與轉(zhuǎn)向軸助力式相同的原因可以小些,因而電動(dòng)機(jī)尺寸小,同時(shí)轉(zhuǎn)矩傳感器、減速機(jī)構(gòu)等的結(jié)構(gòu)緊湊、尺寸也小,這將有利于在整車上的布置和減小質(zhì)量;轉(zhuǎn)向軸等位于轉(zhuǎn)向器主動(dòng)齒輪以上的零部件,不承受電動(dòng)機(jī)輸出的助力轉(zhuǎn)矩的作用,故尺寸可以小些;電動(dòng)機(jī)距駕駛員遠(yuǎn)些,它的動(dòng)作噪聲對(duì)駕駛員影響不大,但震動(dòng)仍然會(huì)傳到轉(zhuǎn)向盤;電動(dòng)機(jī)、轉(zhuǎn)矩傳感器、電磁離合器、減速機(jī)構(gòu)等與轉(zhuǎn)向器主動(dòng)齒輪裝在一個(gè)總成內(nèi),拆裝時(shí)會(huì)因相互影響而出現(xiàn)一定的困難;轉(zhuǎn)向器與典型的轉(zhuǎn)向器不能通用,需要單獨(dú)設(shè)計(jì)、制造。
(3)齒條助力式 齒條助力式電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)的電動(dòng)機(jī)與減速機(jī)構(gòu)等布置在齒條處(圖2-3c),并直接驅(qū)動(dòng)齒條實(shí)現(xiàn)助力。這種布置方案的特點(diǎn)是:
電動(dòng)機(jī)位于地板下方,相比之下,工作噪聲和振動(dòng)對(duì)駕駛員的影響都小些;電動(dòng)機(jī)減速機(jī)構(gòu)等不占據(jù)轉(zhuǎn)向盤至地板這段空間,因而有利于轉(zhuǎn)向軸的布置,駕駛員腿部的動(dòng)作不會(huì)受到它們的干擾;轉(zhuǎn)向軸直至轉(zhuǎn)向器主動(dòng)齒輪均不承受來自電動(dòng)機(jī)的助力轉(zhuǎn)矩作用,故他們的尺寸能小些;電動(dòng)機(jī)、減速機(jī)構(gòu)等工作在地板下方,條件較差,對(duì)密封要求良好;電動(dòng)機(jī)輸出的助力轉(zhuǎn)矩只經(jīng)過減速機(jī)構(gòu)增扭,沒有經(jīng)過轉(zhuǎn)向器增扭,因而必須增大電動(dòng)機(jī)輸出的助力轉(zhuǎn)矩才能有良好的助力效果,隨之而來的是電動(dòng)機(jī)尺寸增大、質(zhì)量增加;轉(zhuǎn)向器結(jié)構(gòu)與典型的相差很多,必須單獨(dú)設(shè)計(jì)制造;采用滾珠螺桿螺母減速機(jī)構(gòu)時(shí),會(huì)增加制造難度與成本;電動(dòng)機(jī)、轉(zhuǎn)向器占用的空間雖然大一些,但用于前軸負(fù)荷大,前部空間相對(duì)寬松一些的乘用車上不是十分突出的問題。
2.2 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件
EPS主要由扭矩傳感器、車速傳感器、電動(dòng)機(jī)、減速機(jī)構(gòu)和電子控制單元ECU組成。
2.2.1 扭矩傳感器
扭矩傳感器檢測(cè)扭轉(zhuǎn)桿扭轉(zhuǎn)變形,并將其轉(zhuǎn)變?yōu)殡娮有盘?hào)并輸出至電子控制單元,是電動(dòng)助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件之一。扭距傳感器由分相器單元1、分相器單元2及扭桿組成(如圖2-4)。
圖2-4 扭距傳感器
轉(zhuǎn)子部分的分相器單元1固定于轉(zhuǎn)向主軸,轉(zhuǎn)子部分的分相器單元2固定于轉(zhuǎn)向傳動(dòng)軸。扭轉(zhuǎn)桿扭轉(zhuǎn)后,使兩個(gè)分相器單元產(chǎn)生一個(gè)相對(duì)角度,電子控制單元根據(jù)兩個(gè)分相器的相對(duì)位置決定對(duì)EPS電動(dòng)機(jī)提供多少電壓。
2.2.2 車速傳感器
車速傳感器的功能是測(cè)量汽車的行駛速度。目前,轎車EPS控制器一般都從整車CAN總線中提取車速信號(hào)。
2.2.3 電動(dòng)機(jī)
電動(dòng)機(jī)由轉(zhuǎn)角傳感器、定子及轉(zhuǎn)子組成(如圖2-5)。
將電動(dòng)機(jī)和減速機(jī)構(gòu)布置在齒條處,并直接驅(qū)動(dòng)齒條實(shí)現(xiàn)助力。通過轉(zhuǎn)角傳感器檢測(cè)電動(dòng)機(jī)的旋轉(zhuǎn)角度防止扭矩波動(dòng)。
圖2-5 電動(dòng)機(jī)結(jié)構(gòu)
2.2.4 減速機(jī)構(gòu)
減速機(jī)構(gòu)采用滾珠式減速齒輪機(jī)構(gòu),將其固定在電動(dòng)機(jī)的轉(zhuǎn)子上。電動(dòng)機(jī)的轉(zhuǎn)動(dòng)傳到減速機(jī)構(gòu),經(jīng)過滾珠及蝸桿傳到齒條軸上。滾珠在機(jī)構(gòu)內(nèi)部經(jīng)過導(dǎo)向進(jìn)行循環(huán)。
2.2.5 電子控制單元
電子控制單元(ECU)的功能是依據(jù)扭矩傳感器和車速傳感器的信號(hào),進(jìn)行分析和計(jì)算后,發(fā)出指令,控制電動(dòng)機(jī)的動(dòng)作。此外,ECU還有安全保護(hù)和自我診斷的功能,ECU通過采集電動(dòng)機(jī)的電流、發(fā)動(dòng)機(jī)轉(zhuǎn)速等信號(hào)判斷系統(tǒng)工作是否正常,一旦系統(tǒng)工作異常,電動(dòng)助力被切斷;同時(shí)ECU將進(jìn)行故障診斷分析,故障指示燈亮,并以故障所對(duì)應(yīng)的模式閃爍。
2.3 電動(dòng)助力轉(zhuǎn)向的助力特性
電動(dòng)助力轉(zhuǎn)向的助力特性由軟件設(shè)定。通常將助力特性曲線設(shè)計(jì)成隨著汽車行駛速度Va的變化而變化,并將這種助力特性稱之為車速感應(yīng)型。圖2-6示出的車速感應(yīng)型助力特性曲線表明,助力既是作用到轉(zhuǎn)向盤上的力矩的函數(shù),同時(shí)也是車速的函數(shù)。
圖2-6 車速感應(yīng)型助力特性
當(dāng)車速Va=0時(shí),相當(dāng)于汽車在原地轉(zhuǎn)向,助力特性曲線的位置居其他各條曲線之上,助力強(qiáng)度達(dá)到最大。隨著車速Va不斷升高,助力特性曲線的位置也逐漸降低,直至車速Va達(dá)到最高車速Vamax為止,此時(shí)的助力強(qiáng)度已為最小,而路感強(qiáng)度達(dá)到最大。
本章小結(jié)
本章主要是介紹了電動(dòng)助力轉(zhuǎn)向機(jī)構(gòu)的組成、工作原理,以及對(duì)電動(dòng)助力轉(zhuǎn)向的三種布置形式進(jìn)行了分析對(duì)比。還有分析了電動(dòng)助力轉(zhuǎn)向系統(tǒng)各主要部件的結(jié)構(gòu)及工作過程和助力特性。第3章 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)
3.1 對(duì)動(dòng)力轉(zhuǎn)向機(jī)構(gòu)的要求
(1)運(yùn)動(dòng)學(xué)上應(yīng)保持轉(zhuǎn)向輪轉(zhuǎn)角和駕駛員轉(zhuǎn)動(dòng)轉(zhuǎn)向盤的轉(zhuǎn)角之間保持一定的比例關(guān)系。
(2)隨著轉(zhuǎn)向輪阻力的增大(或減?。?,作用在轉(zhuǎn)向盤上的手力必須增大(或減小),稱之為“路感”。
(3)當(dāng)作用在轉(zhuǎn)向盤上的切向力時(shí)(因汽車形式不同而異),動(dòng)力轉(zhuǎn)向器就開始工作。
(4)轉(zhuǎn)向后,轉(zhuǎn)向盤應(yīng)自動(dòng)回正,并使汽車保持在穩(wěn)定的直線行駛狀態(tài)。
(5)工作靈敏。
(6)動(dòng)力轉(zhuǎn)向失靈時(shí),仍能用機(jī)械系統(tǒng)操縱車輪轉(zhuǎn)向。
3.2 齒輪齒條轉(zhuǎn)向器的設(shè)計(jì)與計(jì)算
齒輪齒條轉(zhuǎn)向器最主要的優(yōu)點(diǎn)是:結(jié)構(gòu)簡單、價(jià)格低廉、質(zhì)量輕、剛性好、使用可靠;傳動(dòng)效率高達(dá)90%;根據(jù)輸入齒輪位置和輸出特點(diǎn)不同,齒輪齒條式轉(zhuǎn)向器有四種形式:中間輸入,兩端輸出(圖3-1a);側(cè)面輸入,兩端輸出(圖3-1b);側(cè)面輸入,中間輸出(圖3-1c);側(cè)面輸入,一端輸出圖(圖3-1d)。
圖3-1 齒輪齒條式轉(zhuǎn)向器的四種形式
3.2.1 轉(zhuǎn)向系計(jì)算載荷的確定
為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強(qiáng)度。欲驗(yàn)算轉(zhuǎn)向系零件的強(qiáng)度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉(zhuǎn)向軸的負(fù)荷、路面阻力和輪胎氣壓等。為轉(zhuǎn)動(dòng)轉(zhuǎn)向輪要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動(dòng)的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉(zhuǎn)向系中的內(nèi)摩擦阻力等。
精確地計(jì)算出這些力是困難的。為此用足夠精確的半經(jīng)驗(yàn)公式來計(jì)算汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩MR(N·mm)。
N·mm (3-1)
式中 f——輪胎和路面間的滑動(dòng)摩擦因數(shù);
——轉(zhuǎn)向軸負(fù)荷,單位為N;
P——輪胎氣壓,單位為MPa。
作用在轉(zhuǎn)向盤上的手力Fh為:
N (3-2)
式中 ——轉(zhuǎn)向搖臂長, 單位為mm;
——原地轉(zhuǎn)向阻力矩, 單位為N·mm
——轉(zhuǎn)向節(jié)臂長, 單位為mm;
——為轉(zhuǎn)向盤直徑,單位為mm;
——轉(zhuǎn)向器角傳動(dòng)比;
——轉(zhuǎn)向器正效率。
因齒輪齒條式轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)無轉(zhuǎn)向搖臂,故L1、L2不代入數(shù)值。對(duì)給定的汽車,用上式計(jì)算出來的作用力是最大值。因此,可以用此值作為計(jì)算載荷。
梯形臂長度的計(jì)算:
輪輞直徑= 16in=16×25.4=406.4mm
梯形臂長度=×0.8/2= 406.4×0.8/2=162.6mm (3-3)
取=160mm
輪胎直徑的計(jì)算RT:
=406.4+0.55×225=530.2mm (3-4)
取=530mm
轉(zhuǎn)向橫拉桿直徑的確定:
(3-5)
=;
因此取=15mm
初步估算主動(dòng)齒輪軸的直徑:
(3-6)
=140MPa
所以取=18mm
上述的計(jì)算只是初步對(duì)所研究的轉(zhuǎn)向系載荷的確定。
3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì)
(一) EPS系統(tǒng)齒輪齒條轉(zhuǎn)向器的主要元件
(1)齒條是在金屬殼體內(nèi)來回滑動(dòng)的,加工有齒形的金屬條。轉(zhuǎn)向器殼體是安裝在前橫梁或前圍板的固定位置上的。齒條代替梯形轉(zhuǎn)向桿系的搖桿和轉(zhuǎn)向搖臂,并保證轉(zhuǎn)向橫拉桿在適當(dāng)?shù)母叨纫允顾麄兣c懸架下擺臂平行。齒條可以比作是梯形轉(zhuǎn)向桿系的轉(zhuǎn)向直拉桿。導(dǎo)向座將齒條支持在轉(zhuǎn)向器殼體上。齒條的橫向運(yùn)動(dòng)拉動(dòng)或推動(dòng)轉(zhuǎn)向橫拉桿,使前輪轉(zhuǎn)向。
表3-1 齒條的尺寸設(shè)計(jì)參數(shù)
序號(hào)
項(xiàng)目
符號(hào)
尺寸參數(shù)()
1
總長
730
2
直徑
25
3
齒數(shù)
20
4
法向模數(shù)
3
(2)齒輪是一只切有齒形的軸。它安裝在轉(zhuǎn)向器殼體上并使其齒與齒條上的齒相嚙合。齒輪齒條上的齒可以是直齒也可以是斜齒。齒輪軸上端與轉(zhuǎn)向柱內(nèi)的轉(zhuǎn)向軸相連。因此,轉(zhuǎn)向盤的旋轉(zhuǎn)使齒條橫向移動(dòng)以操縱前輪。齒輪軸由安裝在轉(zhuǎn)向器殼體上的球軸承支承。
斜齒的彎曲增加了一對(duì)嚙合齒輪參與嚙合的齒數(shù)。相對(duì)直齒而言,斜齒的運(yùn)轉(zhuǎn)趨于平穩(wěn),并能傳遞更大的動(dòng)力。
表3-2 齒輪軸的尺寸設(shè)計(jì)參數(shù)
序號(hào)
項(xiàng)目
符號(hào)
尺寸參數(shù)(mm)
1
總長
198
2
齒寬
60
3
齒數(shù)
6
4
法向模數(shù)
3
5
螺旋角
14°
6
螺旋方向
左旋
(3)轉(zhuǎn)向橫拉桿及其端部
1.橫拉桿 2.鎖緊螺母3.外接頭殼體4.球頭銷5.六角開槽螺母
6.球碗7.端蓋 8.梯形臂 9.開口銷
圖3-2轉(zhuǎn)向橫拉桿外接頭
轉(zhuǎn)向橫拉桿與梯形轉(zhuǎn)向桿系的相似。球頭銷通過螺紋與齒條連接。當(dāng)這些球頭銷依制造廠的規(guī)范擰緊時(shí),在球頭銷上就作用了一個(gè)預(yù)載荷。防塵套夾在轉(zhuǎn)向器兩側(cè)的殼體和轉(zhuǎn)向橫拉桿上,這些防塵套阻止雜物進(jìn)入球銷及齒條中。
轉(zhuǎn)向橫拉桿端部與外端用螺紋聯(lián)接。這些端部與梯形轉(zhuǎn)向桿系的相似。側(cè)面螺母將橫拉桿外端與橫拉桿鎖緊(見圖3-2)。
注:轉(zhuǎn)向反饋是由前輪遇到不平路面而引起的轉(zhuǎn)向盤的運(yùn)動(dòng)。
(4)齒條調(diào)整 一個(gè)齒條導(dǎo)向座安裝在齒條光滑的一面。齒條導(dǎo)向座1和與殼體螺紋連接的調(diào)節(jié)螺塞3之間連有一個(gè)彈簧2。此調(diào)節(jié)螺塞由鎖緊螺母固定4。齒條導(dǎo)向座的調(diào)節(jié)使齒輪、齒條間有一定預(yù)緊力,此預(yù)緊力會(huì)影響轉(zhuǎn)向沖擊、噪聲及反饋(見圖3-3)。
圖3-3齒條間隙調(diào)整裝置
齒條斷面形狀有圓形、V形和Y形三種,本設(shè)計(jì)采用V形斷面,V形和Y形斷面齒條與圓形斷面比較,消耗的材料少,約節(jié)省20%,故質(zhì)量?。晃挥邶X下面的兩斜面與齒條托座接觸,可用來防止齒條繞軸線轉(zhuǎn)動(dòng)。在齒條與托座之間裝有用減磨材料(聚四氟乙烯)做的墊片,以減少滑動(dòng)摩擦。當(dāng)車輪跳動(dòng)、轉(zhuǎn)向或轉(zhuǎn)向器工作時(shí),如在齒條上作用有能使齒條旋轉(zhuǎn)的力矩時(shí),V形斷面齒條能防止因齒條旋轉(zhuǎn)而破壞齒輪、齒條的齒不能正確嚙合的情況出現(xiàn)。
(二) 轉(zhuǎn)向傳動(dòng)比 當(dāng)轉(zhuǎn)向盤從鎖點(diǎn)向鎖點(diǎn)轉(zhuǎn)動(dòng),每只前輪大約從其正前方開始轉(zhuǎn)動(dòng)30°,因而前輪從左到右總共轉(zhuǎn)動(dòng)大約60°。若傳動(dòng)比是1:1,轉(zhuǎn)向盤旋轉(zhuǎn)1°,前輪將轉(zhuǎn)向1°,轉(zhuǎn)向盤向任一方向轉(zhuǎn)動(dòng)30°將使其前輪從鎖點(diǎn)轉(zhuǎn)向鎖點(diǎn)。這種傳動(dòng)比過于小,因而轉(zhuǎn)向盤最輕微的運(yùn)動(dòng)將會(huì)使車輛突然改變方向。轉(zhuǎn)向角傳動(dòng)比必須使前輪轉(zhuǎn)動(dòng)同樣角度時(shí)需要更大的轉(zhuǎn)向盤轉(zhuǎn)角。對(duì)乘用車,推薦轉(zhuǎn)向器角傳動(dòng)比在17~25范圍內(nèi)選取;對(duì)商用車,在23~32范圍內(nèi)選取,這里選傳動(dòng)比為18:1。即在這樣的傳動(dòng)比下,轉(zhuǎn)向盤每轉(zhuǎn)動(dòng)18°,前輪轉(zhuǎn)向1°。
(三) EPS系統(tǒng)齒輪齒條轉(zhuǎn)向器的安裝 齒輪齒條式轉(zhuǎn)向器可安在前橫梁上或發(fā)動(dòng)機(jī)后部的前圍板上(見圖3-4)。橡膠隔振套包在轉(zhuǎn)向器外,并固定在橫梁上或前圍板上。齒輪齒條轉(zhuǎn)向器的正確安裝高度,使轉(zhuǎn)向橫拉桿和懸架下擺臂可平行安置。齒輪齒條式轉(zhuǎn)向系統(tǒng)中磨擦點(diǎn)的數(shù)目減少了,因此這種系統(tǒng)輕便緊湊。大多數(shù)承載式車身的前輪驅(qū)動(dòng)汽車用齒輪齒條式轉(zhuǎn)向機(jī)構(gòu)。由于齒條直接連著梯形臂,這種轉(zhuǎn)向機(jī)構(gòu)可提供好的路感。
在轉(zhuǎn)向器與支承托架之間裝有大的橡膠隔振墊,這些襯墊有助于減少路面的噪聲、振動(dòng)從轉(zhuǎn)向器傳到底盤和客艙。齒輪齒條轉(zhuǎn)向器裝在前橫梁上或前圍板上。轉(zhuǎn)向器的正確安裝對(duì)保證轉(zhuǎn)向橫拉桿與懸架下擺臂的平行關(guān)系有重要作用。為保持轉(zhuǎn)向器處在正確的位置,在轉(zhuǎn)向器安裝的位置處,前圍板有所加固。
圖3-4 轉(zhuǎn)向器的安裝位置
(四) 齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì)要求 齒輪齒條式轉(zhuǎn)向器的齒輪多數(shù)采用斜齒圓柱齒輪。齒輪模數(shù)取值范圍多在2~3mm之間。主動(dòng)小齒輪齒數(shù)多數(shù)在5~7個(gè)齒范圍變化,壓力角取20°,齒輪螺旋角取值范圍多為9°~15°。齒條齒數(shù)應(yīng)根據(jù)轉(zhuǎn)向輪達(dá)到最大偏轉(zhuǎn)角時(shí),相應(yīng)的齒條移動(dòng)行程應(yīng)達(dá)到的值來確定。變速比的齒條壓力角,對(duì)現(xiàn)有結(jié)構(gòu)在12°~35°范圍內(nèi)變化。此外,設(shè)計(jì)時(shí)應(yīng)驗(yàn)算齒輪的抗彎強(qiáng)度和接觸強(qiáng)度。
主動(dòng)小齒輪選用16MnCr5或15CrNi6材料制造,而齒條常采用45鋼制造。為減輕質(zhì)量,殼體用鋁合金壓鑄。
(五) 齒輪軸和齒條的設(shè)計(jì)計(jì)算
1.選擇齒輪材料、熱處理方式及計(jì)算許用應(yīng)力
(1) 選擇材料及熱處理方式
小齒輪16MnCr5 滲碳淬火,齒面硬度56-62HRC
大齒輪 45鋼 表面淬火,齒面硬度52-56HRC
(2) 確定許用應(yīng)力
a)確定和
b)計(jì)算應(yīng)力循環(huán)次數(shù)N,確定壽命系數(shù)、。
(3-7)
式中 ——齒輪轉(zhuǎn)速(r/min);
——齒輪轉(zhuǎn)一周,同一側(cè)齒面嚙合的次數(shù);
——齒輪的工作壽命(h);
c)計(jì)算許用應(yīng)力
取,
(3-8)
(3-9)
應(yīng)力修正系數(shù)
(3-10)
(3-11)
2.初步確定齒輪的基本參數(shù)和主要尺寸
(1) 選擇齒輪類型
根據(jù)齒輪傳動(dòng)的工作條件,選用斜齒圓柱齒輪與斜齒齒條嚙合傳動(dòng)方案
(2) 選擇齒輪傳動(dòng)精度等級(jí)
選用7級(jí)精度
(3) 初選參數(shù)
初選
按當(dāng)量齒數(shù)
(4) 初步計(jì)算齒輪模數(shù)
轉(zhuǎn)矩 (3-12)
閉式硬齒面?zhèn)鲃?dòng),按齒根彎曲疲勞強(qiáng)度設(shè)計(jì)。
(3-13)
=2.309
(5) 確定載荷系數(shù)
,由,
0.000696,;對(duì)稱布置,??;
取
則
(6) 修正法向模數(shù)
(3-14)
圓整為標(biāo)準(zhǔn)值,取
3.確定齒輪傳動(dòng)主要參數(shù)和幾何尺寸
(1) 分度圓直徑
(3-15)
(2) 齒頂圓直徑
=16+2×2.5(1+0)=21 (3-16)
(3) 齒根圓直徑
=16-2×2.5×1.25=9.75 (3-17)
(4) 齒寬b
(3-18)
因?yàn)橄嗷Ш淆X輪的基圓齒距必須相等,即。
齒輪法面基圓齒距為
齒條法面基圓齒距為
取齒條法向模數(shù)為
(5) 齒條齒頂高
(3-19)
(6) 齒條齒根高
(3-20)
(7) 法面齒距
(3-21)
4.校核齒面接觸疲勞強(qiáng)度
查表,得
查圖,得
取,
所以
=1677.6
所以齒面接觸疲勞強(qiáng)度滿足要求。
3.2.3 齒輪齒條轉(zhuǎn)向器轉(zhuǎn)向橫拉桿的運(yùn)動(dòng)分析
當(dāng)轉(zhuǎn)向盤從鎖點(diǎn)向鎖點(diǎn)轉(zhuǎn)動(dòng),每只前輪大約從其正前方開始轉(zhuǎn)動(dòng)30°,因而前輪從左到右總共轉(zhuǎn)動(dòng)約60°。當(dāng)轉(zhuǎn)向輪右轉(zhuǎn)30°,即梯形臂或轉(zhuǎn)向節(jié)由繞圓心轉(zhuǎn)至?xí)r,齒條左端點(diǎn)移至的距離為
30°=160×cos30°=138.564
=160-138.564=21.436
30°=80
==339.3
=339.3-80=259.32
=340-259.32=80.7
圖3.4 轉(zhuǎn)向橫拉桿的運(yùn)動(dòng)分析簡圖
同理計(jì)算轉(zhuǎn)向輪左轉(zhuǎn)30°,轉(zhuǎn)向節(jié)由繞圓心轉(zhuǎn)至?xí)r,齒條左端點(diǎn)E移至的距離為
=80
=339.3
=80+339.3-340=79.3
齒輪齒條嚙合長度應(yīng)大于
即 =80.7+79.3=160
取L=200
3.2.4 齒輪齒條傳動(dòng)受力分析
若略去齒面間的摩擦力,則作用于節(jié)點(diǎn)P的法向力Fn可分解為徑向力Fr和分力F,分力F又可分解為圓周力Ft和軸向力Fa。
=2×35000/16=4375
=1641.12
=1090.8
3.2.5 齒輪軸的強(qiáng)度校核
1.軸的受力分析
(1) 畫軸的受力簡圖。
(2) 計(jì)算支承反力
在垂直面上
在水平面上
(3) 畫彎矩圖
在水平面上,a-a剖面左側(cè)、右側(cè)
在垂直面上,a-a剖面左側(cè)
a-a剖面右側(cè)
合成彎矩,a-a剖面左側(cè)
a-a剖面右側(cè)
(4) 畫轉(zhuǎn)矩圖
轉(zhuǎn)矩 =4375×16/2=46636.4
2.判斷危險(xiǎn)剖面
顯然,a-a截面左側(cè)合成彎矩最大、扭矩為T,該截面左側(cè)可能是危險(xiǎn)剖面。
3.軸的彎扭合成強(qiáng)度校核
由《機(jī)械設(shè)計(jì)》[4]查得,,
=60/100=0.6。
a-a截面左側(cè)
4.軸的疲勞強(qiáng)度安全系數(shù)校核
查得, ,;
。
a-a截面左側(cè)
查得;由表查得絕對(duì)尺寸系數(shù)
軸經(jīng)磨削加工,查得質(zhì)量系數(shù)β=1.0。則
彎曲應(yīng)力
應(yīng)力幅
平均應(yīng)力
切應(yīng)力
安全系數(shù)
查得許用安全系數(shù)[S]=1.3~1.5,顯然S>[S],故a-a剖面安全。
圖3.3-6 齒輪軸校核分析圖
本章小結(jié)
本章是電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì),主要內(nèi)容如下:
(1) 介紹了電動(dòng)助力轉(zhuǎn)向系統(tǒng)的一種設(shè)計(jì)方法,這種設(shè)計(jì)方法是有其可行性的,能夠設(shè)計(jì)出符合助力要求的電動(dòng)助力轉(zhuǎn)向系統(tǒng),該設(shè)計(jì)方法在現(xiàn)實(shí)中是比較合適的。
(2) 對(duì)電動(dòng)助力轉(zhuǎn)向系統(tǒng)中的齒輪齒條轉(zhuǎn)向器的主要元件進(jìn)行的詳細(xì)的介紹,并且給出了一些參考的轉(zhuǎn)向系參數(shù)。
(3) 根據(jù)已知條件,對(duì)電動(dòng)助力轉(zhuǎn)向系統(tǒng)中的齒輪齒條式轉(zhuǎn)向器進(jìn)行了齒輪軸和齒條的設(shè)計(jì)計(jì)算。
第4章 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)
4.1 結(jié)構(gòu)與布置
齒輪齒條式轉(zhuǎn)向器因結(jié)構(gòu)簡單緊湊、制造工藝簡便等優(yōu)點(diǎn), 既適用于整體式前軸,也適用于采用獨(dú)立懸架的斷開式前軸, 被廣泛地應(yīng)用在轎車、輕型客貨車、微型汽車等車輛上。其中, 與之配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)同傳統(tǒng)的整體式轉(zhuǎn)向梯形機(jī)構(gòu)相比有其特殊之處。
一般來說, 這種轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)大多如圖4-1所示。轉(zhuǎn)向軸1的末端與轉(zhuǎn)向器的齒輪軸2直接相連或通過萬向節(jié)軸相連, 齒輪2與裝于同一殼體的齒條3嚙合, 外殼則固定于車身或車架上。齒條通過兩端的球鉸接頭與兩根分開的橫拉桿4、7相連, 兩橫拉桿又通過球頭銷與左右車輪上的梯形臂5、6相連。因此, 齒條3既是轉(zhuǎn)向器的傳動(dòng)件又是轉(zhuǎn)向梯形機(jī)構(gòu)中三段式橫拉桿的一部分。
絕大多數(shù)齒輪齒條式轉(zhuǎn)向器都布置在軸前后方, 這樣既可避讓開發(fā)動(dòng)機(jī)的下部, 又便于與轉(zhuǎn)向軸下端連接。安裝時(shí), 齒條軸線應(yīng)與汽車縱向?qū)ΨQ軸垂直, 而且當(dāng)轉(zhuǎn)向器處于中立位置時(shí), 齒條兩端球鉸中心應(yīng)對(duì)稱地處于汽車縱向?qū)ΨQ軸的兩側(cè)。
1.轉(zhuǎn)向軸 2.齒輪 3.齒條 4.左橫拉桿
5.左梯形臂 6.右梯形臂 7.右橫拉桿
圖4-1轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)簡圖
對(duì)于給定的汽車, 其軸距L、主銷后傾角β以及左右兩主銷軸線延長線與地面交點(diǎn)之間的距離K均為已知定值。對(duì)于選定的轉(zhuǎn)向器, 其齒條兩端球鉸中心距也為已知定值。因而在設(shè)計(jì)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)時(shí), 需要確定的參數(shù)為梯形底角γ、梯形臂長以及齒條軸線到梯形底邊的安裝距離h。而橫拉桿長則可由轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的上述參數(shù)以及已知的汽車參數(shù)K和轉(zhuǎn)向器參數(shù)M來確定。其關(guān)系式為:
(4-1)
4.2 用解析法求內(nèi)、外輪轉(zhuǎn)角關(guān)系
轉(zhuǎn)動(dòng)轉(zhuǎn)向盤時(shí), 齒條便向左或向右移動(dòng),使左右兩邊的桿系產(chǎn)生不同的運(yùn)動(dòng), 從而使左右車輪分別獲得一個(gè)轉(zhuǎn)角。以汽車左轉(zhuǎn)彎為例, 此時(shí)右輪為外輪, 外輪一側(cè)的桿系運(yùn)動(dòng)如圖4-2所示。設(shè)齒條向右移過某一行程S, 通過右橫拉桿推動(dòng)右梯形臂, 使之轉(zhuǎn)過。
圖4-2外輪一側(cè)桿系運(yùn)動(dòng)情況
取梯形右底角頂點(diǎn)O為坐標(biāo)原點(diǎn), X、Y軸方向如圖5-2所示, 則可導(dǎo)出齒條行程S與外輪轉(zhuǎn)角的關(guān)系:
(4-2)
另外,由圖4-2可知:
∴ (4-3)
而內(nèi)輪一側(cè)的運(yùn)動(dòng)則如圖4-3所示, 齒條右移了相同的行程S, 通過左橫拉桿拉動(dòng)左梯形臂轉(zhuǎn)過。
圖4-3內(nèi)輪一側(cè)桿系運(yùn)動(dòng)情況
取梯形左底角頂點(diǎn)O1為坐標(biāo)原點(diǎn),X 、Y軸方向如圖5-3所示, 則同樣可導(dǎo)出齒條行程S與內(nèi)輪轉(zhuǎn)角的關(guān)系, 即:
(4-4)
(4-5)
因此, 利用公式(4-2)便可求出對(duì)應(yīng)于任一外輪轉(zhuǎn)角的齒條行程S, 再將S代入公式(4-5)即可求出相應(yīng)的內(nèi)輪轉(zhuǎn)角。把公式(4-2)和(4-5)結(jié)合起來便可將表示為的函數(shù),記作:
反之, 也可利用公式(4-4)求出對(duì)應(yīng)于任一內(nèi)輪轉(zhuǎn)角的齒條行程S, 再將S代入公式(4-3)即可求出相應(yīng)的外輪轉(zhuǎn)角。將公式(4-4)和(4-5)結(jié)合起來可將表示為的函數(shù), 記作:
4.3 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)
4.3.1 目標(biāo)函數(shù)的建立
眾所周知, 在不計(jì)輪胎側(cè)偏時(shí), 實(shí)現(xiàn)轉(zhuǎn)向輪純滾動(dòng)、無側(cè)滑轉(zhuǎn)向的條件是內(nèi)、外輪轉(zhuǎn)角具有如圖4-4所示的理想的關(guān)系, 即:
(4-6)
式中 T——計(jì)及主銷后傾角時(shí)的計(jì)算軸距
L——汽車軸距
r——車輪滾動(dòng)半徑
由式(4-6)可將理想的內(nèi)輪轉(zhuǎn)角表示為的函數(shù), 即:
(4-7)
反之, 取內(nèi)輪轉(zhuǎn)角為自變量時(shí), 理想的外輪轉(zhuǎn)角也可表示為的函數(shù), 即:
(4-8)
而由轉(zhuǎn)向梯形機(jī)構(gòu)所提供的內(nèi)、外實(shí)際轉(zhuǎn)角關(guān)系為前述的θi=F(θ0)或 θ0=Φ(θi),因此, 轉(zhuǎn)向梯形機(jī)構(gòu)優(yōu)化設(shè)計(jì)的目標(biāo)就是要在規(guī)定的轉(zhuǎn)角范圍內(nèi)使實(shí)際的內(nèi)或外輪轉(zhuǎn)角盡量地接近對(duì)應(yīng)的理想的內(nèi)或外輪轉(zhuǎn)角。為了綜合評(píng)價(jià)在全部轉(zhuǎn)角范圍內(nèi)兩者接近的精確程度, 并考慮到在最常使用的中小轉(zhuǎn)角時(shí)希望兩者盡量接近, 因此建議用兩函數(shù)的加權(quán)均方根誤差作為評(píng)價(jià)指標(biāo)。即:
(4-9)
(4-10)
兩式中的加權(quán)因子、為:
(4-9)、(4-10) 兩式是等價(jià)的, 可根據(jù)具體情況任取其中之一作為極小化目標(biāo)函數(shù)。
圖4-4理想的內(nèi)、外輪轉(zhuǎn)交關(guān)系
4.3.2 設(shè)計(jì)變量與約束條件
對(duì)于給定的汽車和選定的轉(zhuǎn)向器, 轉(zhuǎn)向梯形機(jī)構(gòu)尚有梯形臂長、底角γ和安裝距離h三個(gè)設(shè)計(jì)變量。其中底角γ可按經(jīng)驗(yàn)公式先選一個(gè)初始值,然后再增加或減小, 進(jìn)行優(yōu)化搜索。而及h的選擇則要結(jié)合約束條件來考慮。
第一, 要保證梯形臂不與車輪上的零部件(如輪胎、輪輛或制動(dòng)底板)發(fā)生干涉, 故要滿足:
式中 Aoy——梯形臂球頭銷中心的Y坐標(biāo)值(見圖4-3)
Aymin——車輪上可能與梯形臂干涉部位的Y坐標(biāo)值
因,所以可知當(dāng)選定時(shí)的可取值上限為: (4-11)
第二, 要保證有足夠的齒條行程來實(shí)現(xiàn)要求的最大轉(zhuǎn)角。即有:
式中 Smax——最大轉(zhuǎn)角或所對(duì)應(yīng)的齒條行程
[S]——轉(zhuǎn)向器的許用齒條行程
因
所以由公式(1)或(3)可知:
一般來說{ }內(nèi)的數(shù)值很小, 故在估算齒條行程時(shí)可略去不計(jì), 即可粗略地認(rèn)為:
所以當(dāng)選定時(shí),的可取值范圍為:
(4-12)
或 (4-13)
(4-12)式和(4-13)式是等價(jià)的,使用時(shí)可根據(jù)具體情況任取其中之一作為約束條件。
第三,要保證有足夠大的傳動(dòng)角。傳動(dòng)角是指轉(zhuǎn)向梯形臂與橫拉桿所夾的銳角。隨著車輪轉(zhuǎn)角增大, 傳動(dòng)角漸漸變小。而且對(duì)應(yīng)于同一齒條行程, 內(nèi)輪一側(cè)的傳動(dòng)角總是比外輪一側(cè)的傳動(dòng)角要小。由圖4-2可知:
由圖4-3可知:
最小傳動(dòng)角發(fā)生在內(nèi)輪一側(cè), 當(dāng)達(dá)到最大值時(shí), 也達(dá)到最大值, 故此時(shí)為最小值。傳動(dòng)角過小會(huì)造成有效分力過小,表現(xiàn)為轉(zhuǎn)向沉重或回正不良。對(duì)于一般平面連桿機(jī)構(gòu), 為了保證機(jī)構(gòu)傳動(dòng)良好, 設(shè)計(jì)時(shí)通常應(yīng)使°, 但一般后置式轉(zhuǎn)向梯形機(jī)構(gòu)的都偏小。這是由于汽車正常行駛中多用小轉(zhuǎn)角轉(zhuǎn)向, 約有80%以上的轉(zhuǎn)角在20°以內(nèi)即使是大轉(zhuǎn)角轉(zhuǎn)向, 也是從小轉(zhuǎn)角開始, 而且速度較低, 所以取23°時(shí)的內(nèi)輪一側(cè)傳動(dòng)角作為控制參數(shù)。以°作為約束條件, 這樣一般均能保證在°時(shí)°。
轉(zhuǎn)向器安裝距離h對(duì)傳動(dòng)角的影響較大, h越小, 占也小, 可獲得較大的。在選擇h時(shí)應(yīng)充分注意到這一點(diǎn), 但h過小會(huì)造成橫拉桿與齒條間夾角ζ過大。由圖4-2、圖4-3可知:
為保證傳動(dòng)良好一般希望°, 以此作為約束條件即要滿足聯(lián)立不等式:
由此可解得:
由于轉(zhuǎn)向器處于中立狀態(tài)時(shí)(即),值較小,故可近似地認(rèn)為:
于是可得h的取值范圍:
<h≤
(4-14)
4.4 研究結(jié)論
研究得到,對(duì)于同一,隨著γ增大,σi略有減小,但要求安裝距離h相應(yīng)地增大,同時(shí)ζmax也隨之加大。隨著的減小,也略有減小,不過小轉(zhuǎn)向力臂也小,操縱力會(huì)有所增大??偟目磥?,只要、γ和h三者選配的恰當(dāng),其差別是很小的。
本章小結(jié)
本章介紹了與齒輪齒條式轉(zhuǎn)向器配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì),介紹了該轉(zhuǎn)向機(jī)構(gòu)的結(jié)構(gòu)特點(diǎn)和優(yōu)化設(shè)計(jì)方法,給出了優(yōu)化設(shè)計(jì)的目標(biāo)函數(shù)和設(shè)計(jì)變量的選取范圍。
結(jié)論
在道路上行駛的各種機(jī)動(dòng)車輛中,轉(zhuǎn)向系統(tǒng)是它們必備的一個(gè)重要組成部分。汽車的轉(zhuǎn)向系就是用來改變或保持汽車行駛方向的機(jī)構(gòu),它由轉(zhuǎn)向操縱機(jī)構(gòu)、轉(zhuǎn)向傳動(dòng)裝置、轉(zhuǎn)向輪和專用機(jī)構(gòu)組成。汽車的轉(zhuǎn)向性能是汽車的主要性能之一,它能直接影響到汽車的操縱穩(wěn)定性,對(duì)于確保車輛的安全行駛、減少交通事故以及保護(hù)駕駛員的人身安全、改善駕駛員的工作條件起著重要的作用。
隨著時(shí)間的推移,高科技的不斷發(fā)展,傳統(tǒng)的機(jī)械助力轉(zhuǎn)向系統(tǒng)慢慢地被電動(dòng)助力轉(zhuǎn)向系統(tǒng)所取代。電動(dòng)助力轉(zhuǎn)向系統(tǒng)采用全新的控制模式,最新的電子技術(shù)和高性能的電機(jī)控制技術(shù),能夠根據(jù)車輛不同的行駛狀況調(diào)節(jié)助力,擁有更好的轉(zhuǎn)向操控性和節(jié)能效果。隨著車輛進(jìn)入家庭步伐的加快以及對(duì)節(jié)能、駕駛舒適性要求的提高,電動(dòng)助力轉(zhuǎn)向系統(tǒng)將擁有非常廣闊的應(yīng)用前景。本文就是對(duì)汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)做了初步的研究,主要以電動(dòng)助力轉(zhuǎn)向系統(tǒng)為研究對(duì)象。
本文采用理論研究和借鑒研究相結(jié)合的方法,對(duì)電動(dòng)助力轉(zhuǎn)向系統(tǒng)進(jìn)行了初步的理論研究和設(shè)計(jì)。
本論文完成的主要內(nèi)容如下:
(1) 汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)的介紹。介紹了轉(zhuǎn)向系統(tǒng)的發(fā)展?fàn)顩r,重點(diǎn)研究了電動(dòng)助力轉(zhuǎn)向系統(tǒng)的發(fā)展前景及與其他轉(zhuǎn)向系統(tǒng)的比較,總結(jié)出EPS系統(tǒng)的優(yōu)點(diǎn),在將來,電動(dòng)助力轉(zhuǎn)向系統(tǒng)在汽車尤其是豪華轎車和貨車中必定會(huì)有廣泛的應(yīng)用。
(2) 電動(dòng)助力轉(zhuǎn)向系統(tǒng)的總體設(shè)計(jì)。對(duì)EPS系統(tǒng)的工作原理進(jìn)行了研究,并對(duì)EPS系統(tǒng)的結(jié)構(gòu)和組成元件進(jìn)行了細(xì)致、深入的研究。
(3) EPS系統(tǒng)的設(shè)計(jì)方法和轉(zhuǎn)向器的設(shè)計(jì)。介紹了電動(dòng)助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)和計(jì)算方法。對(duì)齒輪齒條式轉(zhuǎn)向器進(jìn)行了具體的設(shè)計(jì)和計(jì)算,根據(jù)任務(wù)要求完成了齒輪軸和齒條的部分計(jì)算。
(4) 電動(dòng)助力轉(zhuǎn)向系統(tǒng)控制器的研究。簡單的介紹了電動(dòng)助力轉(zhuǎn)向系統(tǒng)控制器組成和工作原理。
(5) 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)。與齒輪齒條式轉(zhuǎn)向器配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)。介紹了轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的優(yōu)化設(shè)計(jì)方法,研究了其可行性,給出了優(yōu)化設(shè)計(jì)的目標(biāo)函數(shù)和設(shè)計(jì)變量的選擇范圍。
由于時(shí)間緊張和水平有限,對(duì)電動(dòng)助力轉(zhuǎn)向系統(tǒng)的研究不是十分的完善,對(duì)于EPS系統(tǒng)的分析還有待更進(jìn)一步的深入研究,比如對(duì)EPS系統(tǒng)的仿真分析、電機(jī)的控制原理和EPS系統(tǒng)模型的建立等內(nèi)容??傊?,這次的研究工作還只是對(duì)汽車的電動(dòng)助力轉(zhuǎn)向系統(tǒng)的研究和設(shè)計(jì)開了個(gè)頭,還有更多的內(nèi)容需要更進(jìn)一步的學(xué)習(xí)。
致謝
經(jīng)過二個(gè)多月努力,完成了我的畢業(yè)設(shè)計(jì)。由于時(shí)間和能力所限,本論文中一定存在許多疏漏和不足,懇請(qǐng)各位老師們給予批評(píng)指正,以求在今后的工作中做出進(jìn)一步的改進(jìn)與提高。
在畢業(yè)設(shè)計(jì)過程中,我始終得到我的導(dǎo)師鄒玉鳳老師的悉心指導(dǎo)和關(guān)心。老師嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度、謙虛和藹的作風(fēng),給我留下了深刻的印象。對(duì)我以后的工作學(xué)習(xí)將有莫大的幫助。值此論文完成之際,謹(jǐn)向鄒老師致以崇高的敬意和誠摯的感謝。
同時(shí),在整個(gè)畢業(yè)設(shè)計(jì)期間,其他老師在很多方面也給予了我?guī)椭?、指點(diǎn)和支持,他們的工作態(tài)度是我學(xué)習(xí)的榜樣。在此也向他們表示衷心的感謝!
感謝0793111班我的同學(xué)對(duì)我的幫助,畢業(yè)設(shè)計(jì)的完成離不開他們的幫助和支持。
特別感謝我的家人。是他們一直在身后默默地支持著我,讓我順利的走到今天。
最后,再次向所有幫助過我的老師、同學(xué)和朋友致謝!
參考文獻(xiàn)
1 吳浩.電動(dòng)助力轉(zhuǎn)向控制策略研究及整車操縱穩(wěn)定性的客觀評(píng)價(jià).北京理工大學(xué)博士學(xué)位論文.2007:6-15
2 王望予.汽車設(shè)計(jì).第四版.機(jī)械工業(yè)出版社,2010
3 郭新華.汽車構(gòu)造.第二版.高等教育出版社,2008
4 王黎欽,陳鐵銘.機(jī)械設(shè)計(jì).第四版.哈爾濱工業(yè)大學(xué)出版社,2008
5 余志生,汽車?yán)碚?第五版.機(jī)械工業(yè)出版社,2010
6 王連明,宋寶玉.機(jī)械設(shè)計(jì)課程設(shè)計(jì).第四版.哈爾濱工業(yè)大學(xué)出版社,2010
7 張昌華.電動(dòng)助力轉(zhuǎn)向系統(tǒng)的研究與設(shè)計(jì).武漢理工大學(xué),2004
8 張鎮(zhèn)鋒.汽車電動(dòng)助力轉(zhuǎn)向器電控單元(ECU)的研究. 武漢理工大學(xué),2007
9 李書龍.汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)的研究與開發(fā).東南大學(xué),2004
10 錢瑞明.汽車轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的類型分析與優(yōu)化設(shè)計(jì).東南大學(xué),2005
11 杜軍.電動(dòng)助力轉(zhuǎn)向系統(tǒng)的研究.天津大學(xué),2006
12 劉敏,田超,高為.汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)的開發(fā)與設(shè)計(jì).燕山大學(xué),2008
13 馮櫻,肖生發(fā),羅永革.汽車電子控制式電動(dòng)助力轉(zhuǎn)向系統(tǒng)的發(fā)展.湖北汽車工業(yè)學(xué)院,2001
14 張輝,唐厚軍.汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)設(shè)計(jì).上海交通大學(xué),2007
附錄1
電動(dòng)助力轉(zhuǎn)向系統(tǒng)(EPS)
電動(dòng)助力轉(zhuǎn)向系統(tǒng)是現(xiàn)在汽車轉(zhuǎn)向系統(tǒng)的發(fā)展方向,其工作原理是:EPS 系統(tǒng)的ECU 對(duì)來自轉(zhuǎn)向盤轉(zhuǎn)矩傳感器和車速傳感器的信號(hào)進(jìn)行分析處理后,控制電機(jī)產(chǎn)生適當(dāng)?shù)闹D(zhuǎn)矩,協(xié)助駕駛員完成轉(zhuǎn)向操作。
近幾年來,隨著電子技術(shù)的發(fā)展,大幅度降低EPS的成本已成為可能,日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司、美國的Delphi 汽車系統(tǒng)公司、TRW公司及德國的ZF 公司都相繼研制出EPS。Mercedes-Benz 和Siemen