GD1031輕型貨車設計—總體設計
GD1031輕型貨車設計—總體設計,gd1031,輕型,貨車,設計,總體,整體
機電工程學院
畢業(yè)設計外文資料翻譯
設計題目: GD6371輕型客車設計--總體設計
譯文題目: 基于加權輪/軌縫的最佳車輪外形設計
學生姓名: 歐艷偉
學 號: 201115910520
專業(yè)班級: 車輛工程1102
指導教師: 楊宗田
正文:外文資料譯文 附 件:外文資料原文
指導教師評語:
簽名: 年 月 日
正文:外文資料譯文
文章出處:WEAR期刊271(2011)218-226
基于加權輪/軌縫的最佳車輪外形設計
崔達斌,李麗,金雪松,李霞
文摘
提出了基于加權的正常間隙,車輪和軌道之間的接觸點在了火車車輪輪廓的直接優(yōu)化方法。以輪軌對應,車輪LMA和中國鐵路軌道chn60為例,新的優(yōu)化方法用于提高車輪LMA的輪廓。車輛-軌道耦合動力學理論也被用來研究車輛的動態(tài)行為改進的分布影響,同時用滾動接觸理論分析輪軌接觸狀態(tài)下優(yōu)化輪廓線的影響。數據結果表明,LMA改進輪具有優(yōu)良的彎曲行為。實驗發(fā)現,與之前相同優(yōu)化情況的LMA相比,用這種方法提高剖面的LMA在軌道chn60有良好的共形接觸,車輪和鋼軌的接觸點車軌和軌道上的分布是比較均勻的和廣泛的。對輪的縱斷面優(yōu)化后,當車輛行駛在直線軌道時,車輛對輪軌的最大正壓力大大降低,以及不犧牲輪軌動態(tài)特性時的輪軌磨耗指數大大降低。
1. 介紹
輪/軌(W / R)的相互作用在鐵路車輛與軌道的動態(tài)行中發(fā)揮著非常重要的作用,例如,鐵路車輛狩獵的臨界轉速,平穩(wěn)舒適運行,曲線通過能力,輪軌接觸應力水平,滾動接觸疲勞和磨損。其中,輪廓在輪軌接觸區(qū)已引起眾多研究者的關注。
到目前為止,不同的輪廓設計方法,車輪和鋼軌之間都已經得到良好的匹配。早期的車輪輪廓的設計方法主要是根據鐵路運營商的經驗。在過去的幾十年中,越來越多的人更樂意使用數學模型和數值技術對輪廓進行優(yōu)化,進而提高鐵路車輛的動態(tài)性能。海勒和勞爾便是通過優(yōu)化車輪輪廓來改善車輛的動態(tài)性能。吳提出了一種車輪輪廓的設計理念,系統(tǒng)地評估了車輪和鋼軌在車輛的特性和操作條件方面的兼容性。張等人利用一個基于部分鋼軌伸縮的改進方法(它最初是由吳開發(fā)),修改了中國的LMA 輪配置資料。修正輪可以與60kg/m 鋼軌理想整合接觸(chn60)。這種介于W和R之間的共形接觸的形成可以有效地減少它們之間的接觸應力。佩爾森、iwnicki 和后來的諾瓦萊斯等人,根據遺傳算法提出了一種可以直接優(yōu)化程序設計鐵路車輛車輪剖面的方法。沈等人,利用所謂的“反向設計”開發(fā)了一種面向對象的方法,用于設計鐵路車輪踏面和鋼軌。舍夫斯托夫等人,提出了一種基于滾動圓半徑差的數值優(yōu)化技術(RRD)對車輪輪廓進行設計,這種該方法采用基于響應面擬合來設計一個最佳的車輪輪廓與目標點的RRD相契合。后來,舍夫斯托夫等使用相同的理念設計車輪輪廓的輪軌滾動接觸疲勞和磨損。Hamid Jahed等人提出類似的方法中,RRD也可用于火車車輪輪廓的設計。
回顧近幾年對車輪踏面的優(yōu)化,其研究方向主要集中在逆的方法上了,在目標曲線給定的情況下,這種方法是非常有效的。然而,根據設計師經驗,獲得目標函數是一個需要花費很多時間的工作。在本文中,與上述的反演方法相比,根據W/R在接觸點之間正常間隙的常規(guī),提出了改善輪軌系統(tǒng)的動態(tài)接觸行的直接解法。以輪罩使用本方法得到的改進的輪廓的剖面為例,證明了此方法的優(yōu)點。
圖1 車輪踏面優(yōu)化區(qū)域 圖2 車輪與軌道之間的正常間隙
2. 優(yōu)化設計方法
正常間隙(或間隙)在接觸區(qū)域的W / R是評價W / R型材兼容的一個重要因素。小間隙可以在提高W / R整合接觸的情況下,增加接觸面積(接觸片)和減少接觸應力水平。輪軌滾動接觸疲勞(RCF)在一定的負荷情況下,與其接觸面的大小有關。W?/?R的產生和裂紋增長取決于輪軌接觸應力/應變在接觸面上的分布。
本文的研究目旨在提出一個LMA型車輪的直接數值優(yōu)化設計方法,優(yōu)化后的車輪與軌道的LMA chn60滾動接觸有盡可能小的間隙。這種優(yōu)化可以降低輪對動態(tài)行為無喪失影響情況下W/R之間的接觸應力水平。
2.1.數學建模
如圖1所示,車輪踏面LMA從A到B之間的區(qū)域作為優(yōu)化區(qū)域。在如圖所示的英國-奈特系統(tǒng)中,起點A設置在輪緣的最大接觸角所在點處,結束點B在直線上,其橫坐標為30mm。曲線上的點A和B,分別為
(2)
(3)
在胎面上移動的點(節(jié)點)(hi,vi),可以將胎面從A到B設置為n + 1段(i=1,2,……,N)。Hi、vi分別為移動點的縱向坐標和橫向坐標。最終,可以通過擬合這些點的三次函數得到胎面。(2)和(3)作為這樣一個擬合的邊界條件。
為了簡化建模,每個移動節(jié)點在橫坐標hi(i = 1,2,……,n)為一常數,移動節(jié)點的縱坐標V1,V2,……則是不同的,V1,V2,……,Vn)為優(yōu)化設計的變量。車輪踏面外形表示為f(V1,V2,……,Vn)。
2.1.1 目標函數
W?/?R的正常間隙定義為平均間隙值在接觸點CJ的一個特定的區(qū)域,如圖2所示。輪對中心橫向位移為YJ,差距DJ功能定義為
(4)
其中,dji是第i個點的正常間隙,M是接觸點CJ區(qū)域離散點數目。區(qū)域的邊界是由C1和C2在圖2中確定的。接觸點的坐標CJ是由給定的W / R尺寸的輪對橫向位移YJ確定。DJI是W/R給定的車輪輪廓函數f(V1,V2,……,VN)定義的.因此,從式(4)可知,在接觸點Cj處該間隙函數Dj可以表示為Dj?=?Dj(yj,v1,v2,……,vn)。
結合chn60軌道接觸LMA剖面為例,輪對的橫向位移在整個地區(qū)的間隙函數計算結果,如圖3所示。應當指出的是,曲線的較大的值對應于較大的接觸電腦間隙,這種情況意味著接觸斑面積越小,軸載荷條件下接觸應力水平越高。
為了提高車輪和chn60共形接觸狀態(tài),間隙值曲線應該盡可能小。利用求曲線下梯形面積的方法,可歸結為
(5)
,K是W/R曲線上點的數量,如圖3所示。從公式(5)可以得出,K是點的W / R間隙曲線數如圖3所示。從公式(5)可以明顯的看出,不同接觸點處的Dj的差異對S有不同的影響。S越小,與W / R形接觸程度越高,相應的降低輪軌接觸應力水平。因此,我們希望W /?R曲線中的Dj或S盡可能的小。
圖3 間隙函數W?/?R與輪對的橫向位移
值得注意的是,不同的車輛/軌道運行條件,例如軌底坡,軌距,曲線超高及列車速度,導致輪軌之間不同的接觸情況,如接觸點的位置,接觸點的分布與接觸區(qū)寬度。接觸點的分布表明,接觸點位于車輪踏面的橫向方向上。不同的加權系數被應用于控制 Di對S的影響,從而獲得盡可能小的S值。根據經驗,車輪的直線軌道運行上的加權因子應大于曲線軌道的。
考慮到Dide 加權,方程(5)變?yōu)?
(6)
在wj是輪對yj側向位移的加權因子,其對應于接觸點J加權因子可以這樣確定:當車輛沿著直線或曲線軌道運行時計算輪對的橫向位移,模擬車輛-軌道耦合動力學模型,找到與實際的側向位移相近似的約束,使用較大的加權因子來確定橫向位移yj的范圍。
由于參數yj是在計算過程中得到,函數公式(6)也可以表示為
(7)
公式(7)作為目標函數來找到最佳的車輪輪廓。
2.1.2 設計約束
在優(yōu)化過程中,最大法蘭角應滿足車輛運行安全、輪緣厚度、踏面寬度和高度等尺寸的設計要求。
值得注意的是,真正的車輪踏面具有單調的斜坡,但基于三次樣條函數的方法不能保證所設計的輪廓具有單調性,它可能產生波紋面。為了避免這個問題出現,在優(yōu)化設計中使用用約束方程
(8)
同時,下部和上部的設計邊界變量vi,由式(8)給出
i=1,2,...n (9)
在式(8),Gi是在第i個設計變量節(jié)點位置約束方程。在式(9),ai和bi分別為下邊界和上邊界。ai和bi的值選擇為接近初始值,以確保盡可能高的計算速度和盡可能快的方案解決收斂速度。
2.2 優(yōu)化算法
在這一部分中,一種改進的優(yōu)化算法采用與改進的SQP(序列二次規(guī)劃)[相結合的方法,擬牛頓法和BFGS方法。該算法的基本思想是利用SQP方法和擬牛頓法更新迭代找到最優(yōu)的搜索方向和步長的信息,從而提高計算效率。
根據公式(7)–(9),優(yōu)化問題可以描述為
(10)
方程(10)可以轉換為基于拉格朗日函數的二次近似二次規(guī)劃問題。二次規(guī)劃問題的子問題的函數寫為
(11)
是拉格朗日系數,V?=(v1,v2,...,vn)是設計的載體,是可變的。
二次規(guī)劃子問題可以通過線性化得到非線性約束。一種新的循環(huán)公式,利用子問題的解決方案構成
(12)
這里是步驟參數?;是在第k步循環(huán)問題的解,是第k步循環(huán)的設計變量的求解。
在循環(huán)過程中,該方法用于計算擬牛頓近似矩陣,這個矩陣作為拉格朗日函數的Hessian矩陣。在第k步迭代,Hessian矩陣可以通過下式計算
(13)
Hk是nxn維的Hessian矩陣,Qk?=?V(K?+ 1)?V(K),q為?n×1維向量,寫成如下
(14)
是拉格朗日因數,,?S 和?Gi分別為變化的S和Gi,當k = 1, H1= [S1ij] = [?2S/?vi?vj] 是一個N×N維矩陣的二階偏微分,圖4顯示的優(yōu)化算法流程圖。本文利用Matlab軟件和FORTRAN語言開發(fā)了一個計算機代碼表示車輪踏面優(yōu)化程序描述圖。
3.結果與討論
在這一部分中,以影響鐵路車輛的動態(tài)行為的優(yōu)化分布的影響為例,表明了本文提出的方法的優(yōu)點。
3.1 案例研究:優(yōu)化LMA車輪輪廓
在優(yōu)化LMA車輪輪廓和分析優(yōu)化配置的動態(tài)行為中,軌道傾角是1:40,軌道軌距為1435mm,車輪的名義滾動半徑為457.5mm。中國的鐵路客運車輛的參數用于分析[ 31 ]。在計算中所選的軌跡由60m直線軌道,一個建的弧形軌道和200m長直軌道組成。彎曲的軌道包括兩個180m緩和曲線和一個半徑為3000米、長為250米右轉園曲線。汽車的車速為180km/h。
移動節(jié)點的數目選擇如下。得到可用的加權因子,當車輛在選定的軌道上運行時,采用車輛-軌道耦合動力學模型對輪對的橫向位移進行計算。軌道不平順是指在直線上發(fā)生的動態(tài)變化。前輪的橫向位移,即為圖5所示LMA直線。從圖5中可以觀察到,前輪的橫向位移范圍是從?4mm到 4mm,所以在這樣一個地區(qū)應當考慮最大的數值。前輪橫向位移軌道曲線如圖6所示,這一數字表明,側向位移在8mm以內,因此,對于車輪踏面相應的接觸區(qū)使用的加權系數應當小于用于?4mm到4mm的加權系數。
圖4 車輪型面設計程序流程圖
圖5 在直線軌道前輪對橫向位移 圖6 對曲線軌道前輪對橫向位移
圖7 OPT和LMa 圖8 車輪與軌道之間的間隙
為簡單起見,因子W1是用來測量側向位移從0~4mm范圍變化時,對應的接觸點間隙Dj的變化,W2用于側向位移變化在4–8mm范圍時。隨著車輪輪廓的其他方面的差距,在優(yōu)化時不考慮間隙Dj。所以,車輪的踏面區(qū)域的優(yōu)化分為兩個部分,優(yōu)化結果主要取決于W1和W2之間的比率,而不依賴于選擇的W1和W2值的大小。使用不同的比例得到不同的優(yōu)化結果。根據作者的經驗,選擇W1和W2首先考慮實現在車輪踏面較大的區(qū)域優(yōu)化設計的目標。最合適的W1和W2的比例是通過試驗論證得到的,因此,加權因子是用來控制在不同的車輪踏面優(yōu)化區(qū)域的接觸應力水平。W1和W2的具體值應足夠大,以避免計算中出現累積誤差,并對照其他相關的實際條件選擇一定的比例。在這項研究中,根據先前的經驗,W1和W2分別為100和50。
通過2.2節(jié)中提出的優(yōu)化算法,優(yōu)化配置,通過選擇顯示,得到如圖7所示。與初始輪廓LMA相比,圖中顯示的優(yōu)化配置明顯不同于LMA型。優(yōu)化前后的W / R的間隙如圖8所示,從這個圖可以明顯看出制作輪廓曲線低于LMA側向位移從?6mm 到2mm時的曲線。小的差距意味著相應的接觸應力小,間隙值范圍大于LMA。
3.2 輪軌接觸幾何
LMA的RRD的計算選擇如圖9所示,從這個圖我們可以清楚地看到,OPT的RRD的選擇大于橫向位移在0-7mm區(qū)域是的LMA的RRD。這意味著在相同情況下,優(yōu)化的LMA輪廓比LMA輪對有更大的等效錐度,因此車輛蛇行時的臨界速度低于理想直線運行時的臨界速度。
當側向位移從?12mm 到12mm增大時,右輪軌接觸點對的分布和LMa型接觸點的分布分別如圖10(a)和(b)所示。圖(a)表明,側向位移在-8mm~0mm范圍時,LMA輪廓接觸點主要集中在同一位置,這種情況會加速車輪與鋼軌的磨損。圖10(b)所示的接觸點分布比LMA更均勻,有利于降低軌道磨損和滾動接觸疲勞。
3.3 蛇行臨界速度
這里計算時,該車配備了兩個不同的輪廓蛇行臨界速度,LMA車輛臨界速度為421km/h,匯編程序的臨界速度是400公里/小時,較高的等效錐度導致了較低的臨界速度。但由于目前車輛運行的最大運行速度低于300km/,優(yōu)化仍能滿足當前配置的需求。
最后一個需要保持穩(wěn)定性的是第三輪。圖11顯示,當車速是400公里/小時,第三輪對橫向位移與車輛的行駛距離的關系。
圖9 滾動半徑差與側向位移 圖11 第三輪對橫向位移與行駛距離
圖10 接觸點與輪對橫向位移分布
3.4 彎曲性能
具有兩不同輪輻的車輛的彎曲性能用于3.1節(jié)相同的軌道來模擬。不同行駛距離的前輪橫向位移如圖12所示,數據表明,整體彎曲軌道時OPT輪對的偏差低于LMA輪對,振蕩的幅度低于彎曲后的LMa輪對,阻尼震蕩比LMA輪對更快。OPT輪對的彎曲性能是優(yōu)于LMA輪對的,這是因為橫向位移在-7~7mm范圍時,OPT輪對有更高的等效錐度。
利用車輛及軌道耦合動力學的理論,對磨損指數也進行了研究,如圖13所示。車輪的橫向位移在8mm時,輪緣和輪軌就不接觸了,因此磨損指數處于一個較低的水平。顯然,當車輛通過圓形軌道時,OPT型的磨損指數比LMA型低很多,這是OPT型車輪的蠕滑率低于LMA型車輪,然而,在本文中未作過多研究,但是在圓形軌道時,LMA型和OPT型車輪的接觸壓力非常接近,祥見3.5節(jié)。車輛在直線軌道上行駛時,由于其蠕滑率接近零,OPT型和LMA型車輪的磨損指數均幾乎接近于零。
對兩種不同輪廓剖面的脫軌系數和乘坐舒適性計算和比較,結果差異不大,為簡介起見,相關結果不在本文表述。
圖12 前輪的側向位移與行駛距離 圖13 左前輪磨損指數與行駛距離
3.5 輪軌接觸應力
通常接前輪輪軌的接觸應力高于其他車輪。因此,應當計算車輪和鋼軌最高接觸應力。Kalker的非赫茲滾動接觸三維彈性理論用于分析接觸斑的形狀和接觸點處的應力分布。
粘/滑區(qū)的左側輪軌接觸斑如圖14所示,當車輛在直線軌道運行時,OPT型車輪接觸面面積明顯大于LMA型;在相同的軸荷下,OPT型車輪接觸應力減少。當車輛在曲線軌道上運行時,兩者有相近大小的接觸面積。
圖14 粘/滑區(qū)當車輛在直線軌道和曲線軌道上運行
圖15 車輛在直線軌道(上)和曲線軌道(下)上運行是,正常壓力分布
圖15顯示了常壓下左側輪軌接觸斑分布的計算結果。我們可以看到,車輛在直線軌道運行時,OPT型車輪最大正壓力分布低于LMA型,其主要原因是直線軌道有較大的接觸面積;當車輛行駛在彎曲的軌道時,這兩種類型車輪的最大正壓力差別不大。
利用非赫茲接觸理論計算米塞斯等效應力。車輛行駛在同一軌道時,前輪的最大輪軌接觸應力有兩種不同的計算方法。如圖16,車輛行駛在直線軌道上時,PPT型車輪的接觸應選擇比LMA型低得多;如果希望車輛通過圓曲線軌道時接觸應力進一步減小,LMA型胎面優(yōu)化區(qū)域需要擴展到輪緣根部。目前為止,這樣的研究仍在進行中。由于中國的高速鐵路軌道大部分是直線或曲線,優(yōu)化LMA型優(yōu)化可以更有效的減少運行時磨損和滾動接觸疲勞。
4 結論
本文提出了一種新的直接數值方法來優(yōu)化車輪,它根據測量W / R之間接觸點附近的正常間隙值,該方法用于優(yōu)化中國LMA型車輪。利用車輛/軌道耦合動力學模型、滾動接觸的力學模型、輪軌系統(tǒng)和輪軌接觸幾何模型研究了chn6與鋼軌滾動接觸的力學性能和優(yōu)化情況,它發(fā)現與優(yōu)化前相比,提高了彎曲性能,降低了水平直線軌道運行時的接觸應力;同時優(yōu)化輪對與chn60良好的共形接觸,提高接觸點的分布,降低接觸應力,減少磨損和滾動接觸疲勞。
致謝
目前的研究已由中國國家自然科學基金(50821063,50875221),中國國家重點基礎研究發(fā)展計劃(2007cb714702),鐵道部基礎研究計劃(z2006-0492008j001-a),和博士點基金(20090184110023)資助。
作者非常感謝西南交通大學牽引動力國家重點實驗室的嚴女士在英語方面給予的幫助。
附件:外文資料原文
Optimal design of wheel profiles based on weighed wheel/rail gap
abstract
A direct optimization method for railway wheel profiles is put forward based on the weighed normalgap between wheel and rail at the contact point. Taking the wheel/rail counterpart, wheel LMa and railCHN60 of China railway, as an example, the new optimization method is used to improve the profileof wheel LMa. The coupling dynamics theory of the vehicle and track is also used to investigate theeffect of the improved profile on the dynamical behavior of the vehicle, and the rolling contact theoryis hired to analysis the influence of the optimized wheel profile under the wheel/rail contact status. Thenumerical results illustrate that the improved wheelset of LMa has superior curving behavior. It is foundthat the improved profile of LMa with this method is in good conformal contact with rail CHN60, and thedistribution of contact points of the wheel and rail is relatively uniform and extensive on the wheel treadand rail top, compared to the LMa in the same case before its optimization. After the profile optimizationof the wheelset, the maximum normal pressure of the wheel/rail is greatly lowered when the vehicleruns on the tangent track, and the wear index of the wheel/rail is largely reduced without sacrificing thedynamic performance of the wheelset.
1. Introduction
Wheel/rail (W/R) interaction plays an important part in thedynamic behavior of railway vehicle and track, such as, the critical speed of railway vehicle hunting, running stability and comfort, the ability of curve negotiating, wheel/rail contact stress level, rollingcontact fatigue and wear. Among them, the wheel profile in W/Rcontact region has drawn attention of many researchers [1–5].
So far, different design approaches for wheel profiles have beendeveloped to obtain the satisfactory matching of wheel and rail.Earlier methods to design wheel profiles were mainly based onthe experience of railway operators [6,7]. During the last decades,there has been much greater interest in employing mathematicalmodels and numerical technology to optimize the wheel profileto improve railway vehicle dynamic behavior. Heller and Law [8]optimized the wheel profile to improve the dynamic performanceof the rolling stock. Wu [9] put forward a concept of wheel pro-file design to systemically evaluate the compatibility of the wheeland rail profile based on the vehicle characteristics and the operat-ing condition. Zhang et al. [10] utilized an improved method basedon the partial rail profile expansion, which was originally devel-oped by Wu [9], to modify the whAeel profile of LMa in China. Themodified wheel has a desirable conformity contact with Chineserail of 60kg/m (CHN60). This conformal contact forming betweenW and R can effectively reduce the contact stress level betweenthem. Persson and Iwnicki [11] and later Novales et al. presented a direct optimization procedure based on genetical gorithmtodesigna wheel profile for railway vehicles [12]. Shen et al. developed atarget-oriented method with so called ‘inverse methodology’ forthe design of railway wheel profile involving contact angle andrail profile information [13]. Shevtsov et al. proposed a numeri-cal optimization technique based on rolling circle radius difference(RRD) of wheelset to design the wheel profile [14,15]. This method employed a multipoint approximation based on responsive surface fitting to design an optimum wheel profile that matches a target RRD. Later, Shevtsovetal. Used the same idea to design a wheelprofile considering wheel/rail rolling contact fatigue and wear [16]. Asimilar approach was proposed by Hamid Jahed et al., wherein theRRD function was also used for the design of railway wheel profiles.
As reviewed in detail in [18], the recent researches on wheelprofile optimization have mainly focus on the inverse method ology. This method ology is very efficient when a target curve is given. However, to obtain a target curve function generally by designer’s experience would be a trouble somework which costs much time.Inthis paper, as contrasted to the above mentioned inverse methods,adirect solution method based on the normal gap between the profiles of W/R around their contact point is put forward to improvethe dynamic and contact behavior of W/R system. The improvedprofile of wheel LMa obtained by using the present methodis given as an example to demonstrate the advantages of themethod.
2. Optimal design method
The normal gap (or normal clearance) of W/R in the contactregion is an important factor to evaluate the compatibility of W/Rprofiles [19–21]. The small clearance can improve the conformitycontact situation for W/R, increase the contact area (contact patch)and reduce the contact stress level. W/R rolling contact fatigue(RCF) is related to its contact patch size under the condition of the prescribed load [22]. The initiation and growth of the cracks on W/R depend on the wheel/rail contact stress/strain level in the contactpatch [23].
The objective of study in this paperis to propose a direct numerical optimization method to design the profile of wheel LMa. Theoptimized wheel LMa in rolling contact with rail of CHN60 has anormal clearance as small as possible. The optimization decreasesthe contact stress level between the W/R without loss of dynamicbehavior ability of the wheelset.
2.1. Mathematical modeling
As shown in Fig. 1, the wheel tread of LMa from its flange root Ato its field side B is chosen as an optimization region. In the coordi-nate system as shown, the start point A is set at the point with themaximum contact angle of wheel flange. The end point B is on thestraight line and its abscissa is 30mm. The slopes of points A and Bare, respectively
(2)
(3)
The moving points (nodes) (hi,vi), (i=1, 2, ..., n) on the treadcan be set by dividing the tread from A to B into the segments ofn+1. hiand viare, respectively, the vertical and lateral coordinatesof the moving points. End for end, the tread can be generated byfitting these points with cubic spline function [17], and Eqs. (2) and(3) serve as the boundary conditions for such a fitting.
To simplify modeling, the abscissa of each moving node hi(i=1,2, ..., n), is selected as a constant, and the vertical coordinatesof the moving nodes, v1,v2,...,vn are considered to be varied.v1,v2,...,vn are chosen as the design variables in the optimization.The wheel tread profile is now expressed as f(v1,v2,...,vn).
2.1.1. Objective function
The normal gap of W/R is defined as the average clearance valuein a specific region around the contact point Cj, as shown in Fig. 2.When the lateral displacement of the wheelset center is yj, thefunction of the gap Djis defined as
(4)
in which, djiis the normal clearance at the ith point and m isthe number of discrete points in the region around the contactpoint Cj. The boundary of the region is determined by c1 andc2 in Fig. 2. The coordinates of the contact point Cjare deter-mined by the given lateral displacement yjof the wheelset forthe given W/R sizes. The value of djiis determined by the wheelprofile function f(v1,v2,...,vn) for the given profiles of the W/R.Therefore, from Eq. (4), the gap function Djcan be represented byDj= Dj(yj,v1,v2,...,vn) at the contact point Cj.
Considering LMa profile in contact with CHN60 rail as anexample, their gap function in the whole region of the lateral dis-placement of wheelset is calculated, as shown in Fig. 3. It should benoted that the larger value of the curve corresponds to the largerclearance around the contact point, and this situation means thatthe area of contact patch is smaller and the level of the contactstress is higher under the condition of the same axle load.
In order to improve the conformal contact status of the wheeland CHN60, the gap curve should have the values as small as pos-sible. Using the trapezoidal method of summing the area under thecurve, the area S can be formulated as
(5)
where K is the number of the points in the gap curve of the W/R as shown in Fig. 3. From formulae (5), it is obvious that the gap Dj at different contact points contribute different values to S. The smaller S is, the higher the W/R conformal contact degree is, and correspondingly the lower W/R contact stress level is. Therefore, it is hoped that S or Djis as small as possible in the matching of the W/R profiles.
It should be noticed that different vehicle/track operation con-ditions, e.g., rail cant, track gauge, curve super elevation and trainspeed, lead to the different contact situations between W/R, suchas the contact point location, the distribution of the contact pointsand the contact area width. The distribution of the contact pointsindicates that the contact points are situated on the wheel treadin the lateral direction. Different weighting factors are applied to control the contribution to S of variable Di values a iming to obtain S value as small as possible. According to experience, weighting fac-tors for the wheel running on tangent tracks should be bigger thanthose for curved tracks.
Considering the weighting Diin S, Eq. (5) becomes as
(6)
where wjis defined as the weighting factor of the lateral displace-ment of wheelset yj, which corresponds to contact point j. Theweighting factors can be determined in this way: calculate the lat-eral displacement of the wheelsets when the vehicle moves along tangent or curved tracks using the vehicle-track coupling dynamics model [24], find the approximate bound of the practical lateral dis-placement,uselargerweightingfactorsforthelateraldisplacementyjwithin the bound.
Since the parameter yjis given in the calculation process, func-tion S in Eq. (6) can also be expressed as
(7)
Eq.(7) is used a sthe objective function to find the optimal wheelprofile.
2.1.2. Design constraints
During the optimization, such size design requirements as thesafety of wheel operation, the wheel flange thickness and theheight, the tread width and the maximum flange angle should besatisfied.
It is noted that the real wheel tread has the monotonic slope,but the method, based on cubic spline function, cannot ensure themonotonicity of the designed wheel profile, and may generate thecorrugated tead. To avoid this problem arising in the optimizationdesign, a constraint equation is used and reads
(8)
At the same time, the lower and upper boundaries of the design variables viin Eq. (8) are given as
i=1,2,...n (9)
In Eq. (8), Giis the constraint equation at the position of the ithdesign variable node. In Eq. (9), aiis the lower boundary and biisthe upper. The value of aiand biare selected to be as close to theinitialvalueaspossibletoensurethehighcomputationalspeedandthe fast convergence of solution as well.
2.2. Optimization algorithm
In this section, a modified optimization algorithm is developed by applying the improved SQP(sequentialquadraticprogramming) [25,26] method combined with quasi-Newton method and BFGSmethod [27–30]. The basic idea of this algorithm is to find the opti-mal search direction and the information of the step size by usingthe SQP method and to renew the iteration by using the quasi-Newton method, thereby improving calculation efficiency.
According to Eqs. (7)–(9), the optimization problem can be described by
(10)
Eq. (10) can be converted to quadratic approximation quadraticprogramming sub-problem based on the Lagrange function. Thefunction of the quadratic programming sub-problem is written as
(11)
where is the Lagrange multiplier, and v = (v1,v2,...,vn)Tis the design vector that is variable.
The quadratic programming sub-problem can be obtainedthrough linearization of the nonlinear constrained ones. A newiterative formula is constituted by using the solution of the sub-problem as
(12)
Here ? is the step parameter; tkis the solution of the sub-problemin
收藏