壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
文獻綜述
題 目 采用U型地埋管換熱器的
地源熱泵空調系統(tǒng)設計
學生姓名
專業(yè)班級
學 號
院 (系)
指導教師(職稱)
完成時間
地源熱泵技術的研究與應用現(xiàn)狀
1 引言
目前由于能源消耗的急劇增加, 熱泵作為一種通過消耗少量高品位能源, 把熱量由低溫級上升到高溫級的特殊裝置而受到了人們的青睞。
地源熱泵( Ground source heat pump )也稱為地熱熱泵( Geothermal heat pump),它是以地源能(土壤、地下水、地表水、低溫地熱水和尾水)作為熱泵夏季制冷的冷卻源、冬季采暖供熱的低溫熱源,同時是實現(xiàn)采暖、制冷和生活用水的一種系統(tǒng)它用來替代傳統(tǒng)的用制冷機和鍋爐進行空調、采暖和供熱的模式,是改善城市大氣環(huán)境和節(jié)約能源的一種有效途徑,也是國內(nèi)地源能利用的一個新發(fā)展方向。
地源熱泵系統(tǒng)根據(jù)不同的構成型式有不同的名稱: 地耦合式熱泵、土壤熱源熱泵、水源熱泵、地熱熱泵、閉環(huán)熱泵、太陽能熱泵、地源熱泵等。這些系統(tǒng)的工作原理基本相同。
2 地源熱泵工作原理
典型的地源熱泵是通過埋地熱交換器從土壤吸熱或向土壤放熱。夏季空調時,室內(nèi)的余熱經(jīng)過熱泵轉移,并通過地埋換熱器釋放到土壤中,同時為冬季蓄存熱量;冬季供暖時,通過地埋換熱器從土壤中取熱,經(jīng)過熱泵將熱量供給用戶,同時, 在土壤中蓄存冷量,以備夏季空調用。此類熱泵主要包括三套系統(tǒng): 室外管網(wǎng)系統(tǒng)、熱泵工質循環(huán)系統(tǒng)及室內(nèi)空調管網(wǎng)系統(tǒng)。
3 國內(nèi)外應用現(xiàn)狀
3.1 國外應用現(xiàn)狀
1912年, 瑞士的H.Zoelly首次提出利用淺層地熱能( 地源能)作為熱泵系統(tǒng)低溫熱源的概念,但由于當時一次能源充足,用熱泵供暖的社會需求不足,導致熱泵技術沒有得到重視和發(fā)展。直到 1948年,H.Zoelly的專利技術才真正引起普遍的關注,尤其是歐洲和美國。20 世紀50年代,美國和歐洲國家開始研究和利用地源熱泵, 但當時能源價格較低,使用熱泵系統(tǒng)并不經(jīng)濟,因而沒有得到推廣。1974 年以來,由于石油危機的出現(xiàn)和環(huán)境的惡化, 引發(fā)了人們對新能源的開發(fā)和利用, 因此開始了地源熱泵的研究和利用。這一時期歐洲建立了許多采用水平盤管地下?lián)Q熱器的土壤源熱泵系統(tǒng)的研究平臺。自1974年起,瑞典、瑞士、荷蘭等國政府資助的示范工程逐步建立起來,地源熱泵技術也日趨完善。從熱泵技術來說,此時的地源熱泵系統(tǒng)大多直接利用地下水作為冷熱源,因此對地下水溫度有一定要求, 而且當時的技術相對粗糙,甚至不設置回灌井。
20世紀70年代末到90年代初,美國開展了冷熱聯(lián)供地源熱泵的研究工作。這一時期,地源熱泵技術飛速發(fā)展并趨于成熟。美國的地源熱泵機組生產(chǎn)廠家也十分活躍,成立了全國地源熱泵生產(chǎn)商聯(lián)合會,并逐步完善了工程安裝網(wǎng)絡, 成為世界上地源熱泵機組生產(chǎn)和使用的大國。
3.2 國內(nèi)應用現(xiàn)狀
我國具有較好的熱泵科研成果與應用基礎,20世紀50年代,天津大學的熱能研究所最早開展了熱泵方面的研究工作,并于1965年研制了我國第一臺水冷式熱泵空調機組。我國對土壤源熱泵的研究始于20世紀80年代,國內(nèi)的科研工作者相繼展開地源熱泵的研究和試驗工作,各種試驗研究工作主要由各大學進行。雖然我國對地源熱泵的研究和應用較晚,但發(fā)展勢頭很好,地源熱泵發(fā)展已列入國家新能源和可再生能源產(chǎn)業(yè)發(fā)展十五規(guī)劃。1978年-1999年,中國制冷學會第二專業(yè)委員會舉辦了9屆全國余熱制冷與熱泵技術學術會議,在2001年寧波召開的全國熱泵和空調技術交流會和2002年在北京召開的國際熱泵會議上,國內(nèi)外有關人士開始關注中國這個很有發(fā)展?jié)摿Φ拇笫袌?。近幾年來國?nèi)加強了地熱源熱泵的應用研究力度,自行研究和生產(chǎn)地源熱泵機組的廠家已達幾十家, 如山東的富爾達、北京的中科能等。另外國外很多知名公司已經(jīng)在中國設立了銷售部。目前我國地源熱泵工程正逐年增加,并取得了初步效果。
但從總體上看,中國地源熱泵的發(fā)展還不夠規(guī)范, 基礎研究上還有待于進一步完善,行業(yè)之間缺少必要的合作交流,這些因素都或多或少影響著這項技術的推廣。但是根據(jù)綠色奧運、科技奧運、人文奧運的要求,2008年的北京奧運會,在體 育場館、運動員村等奧運會建筑中將廣泛采用太陽能、地熱能等可再生能源, 并將采用高效、清潔的常規(guī)能源利用技術,將在一定程度上代表了國際上最先進的用能方式,其產(chǎn)生的效應將直接影響北京市未來能源利用的發(fā)展方向。同時對國內(nèi)其他地區(qū)地源熱泵的發(fā)展也將產(chǎn)生一定的積極作用。
4 國內(nèi)外研究現(xiàn)狀
4.1 國外研究現(xiàn)狀
國外對土壤源熱泵的研究主要集中在地下?lián)Q熱器,1946 年,美國進行了12個地下?lián)Q熱器的研究項目,這些研究項目測試了埋地盤管的幾何尺寸、管間距、埋深等,并將熱電偶埋人地下,測試了土壤溫度隨時間變化和受傳熱過程影響的情況。1953年,美國電力協(xié)會的研究表明,以上這些試驗還沒有提供可用于地下?lián)Q熱 器的設計方程。20世紀50年代初,英國安裝了用于住宅供暖的地源熱泵系統(tǒng)。
1974年,歐洲實施了30個工程開發(fā)研究項目,發(fā)展了地源熱泵的設計、安裝技術,并積累了運行經(jīng)驗。1971年—1978年,美國進行了多種形式地下?lián)Q熱器的測試, 并引入太陽能集熱器,組成混合土壤源熱泵系統(tǒng)這一時期開始采用塑料盤管代替金屬盤管。美國和歐洲國家設計安裝的土壤源熱泵系統(tǒng)大多參照類似的已建工程設計安裝,另一些工程的設計則采用估算方法。
目前,國外對土壤源熱泵的研究仍集中在地下?lián)Q熱器的傳熱性能上。地下?lián)Q熱器的設計、計算模型約30多種,對所有模型的建立,關鍵是求解巖土溫度場的動態(tài)變化,其基本模型有2種。?線熱源模型?圓柱熱源模型。
4.2 國內(nèi)研究現(xiàn)狀
目前,國內(nèi)外的熱泵產(chǎn)品主要以風冷熱泵和地源熱泵為主,輸出溫度大于60℃,以地源或低溫地熱水(50℃以下)為熱源的高溫地源熱泵在國內(nèi)只有少數(shù)幾個單位在研制,如中科院廣州能源研究所、天津大學、清華大學等,廣州能源研究所于 2001年初率先推出了最高出水溫度可達75℃的高溫地源熱泵機組,并在近兩年里由其下屬公司一北京中科能源高科技有限公司在北京、廣州等地成功實施了十余個工程項目,涉及空調采暖、散熱器采暖、熱水供應、地熱尾水熱回收利用等多種形式,取得了良好的運行效果。
國內(nèi)對土壤源熱泵的研究主要集中在以下5個方面:地下?lián)Q熱器的傳熱計算模型的建立,地下?lián)Q熱器傳熱計算的模擬研究,地下?lián)Q熱器的篩選及埋地盤管合理管間距的理論分析,土壤凍結對地下?lián)Q熱器傳熱的影響,地下?lián)Q熱器間歇運行工況的分析。
5 地源熱泵研究的一些問題
影響地源熱泵推廣應用的主要原因為
(1)土壤特性問題。地源熱泵系統(tǒng)的性能好壞與當?shù)赝寥罒崽匦悦芮邢嚓P,地熱源的最佳間隔和深度取決于當?shù)赝寥赖臒嵛镄院蜌夂驐l件。土壤的熱特性研究主要包括土壤的能量平衡、熱工性能、土壤中的傳熱與傳濕以及環(huán)境對土壤熱物性的影響等。
(2)地下?lián)Q熱器傳熱機理的理論研究繁多,但缺乏理論與實踐的有效結合,缺乏多環(huán)境下應用技術的系統(tǒng)研究以及實際有效的強化傳熱方法。
(3)不同冷、熱負荷下,地下?lián)Q熱器與熱泵系統(tǒng)最佳匹配技術的研究不夠。20世紀90年代以來,地熱空調技術的研究熱點依然集中在地熱能換熱器的換熱機理、 強化換熱及熱泵系統(tǒng)與地熱能換熱器匹配等方面。與前一階段單純采用線源傳熱模型不同,最新的研究更多地開始關注相互耦合的傳熱、傳質模型以更好地模擬地熱能換熱器的真實換熱情況; 同時開始研究采用熱物性更好的回填材料,以強化土壤埋管在土壤中的導熱過程,從而降低系統(tǒng)用于安裝土壤埋管的初投資;為進一步優(yōu)化系統(tǒng),國外有關地熱能換熱器與熱泵裝置的最佳匹配參數(shù)的研究也在開展。
(4)熱泵技術與其它技術的配合問題:地源熱泵技術是暖通空調技術與鉆井技術相結合的綜合技術,兩者缺一不可,這要求工程組織者和工程技術人員能夠合理協(xié)調、做好充分的技術經(jīng)濟分析。
(5)對環(huán)境的影響問題:目前地下水的回灌技術不完善,在一定程度上會影響以水為低位熱源的地源熱泵的進一步推廣;此外土壤源熱泵空調系統(tǒng)鉆井對土壤熱、 濕及鹽分遷移的影響研究有待進一步深入,如何使不利因素減少到最小是必須考慮的問題。
6 結束語
隨著我國經(jīng)濟的發(fā)展和人民生活水平的提高,高效環(huán)保節(jié)能的供熱和制冷空調已成為城鎮(zhèn)居民的基本生活需求,市場前景很好。另外,由于形式多樣,安裝靈活, 地源熱泵將為我國中小城市,甚至廣大農(nóng)村人民生活質量的提高做出貢獻。在地源熱泵技術的應用中,盡管還有許多技術問題需要解決,但由于其技術上的優(yōu)勢和節(jié)能、環(huán)保、可持續(xù)發(fā)展的優(yōu)點,是建筑物供暖和制冷的合理可行選擇方案之一。在能源可持續(xù)發(fā)展戰(zhàn)略中,地源熱泵將倍受人們的重視與青睞。
參考文獻
[1]朱家玲,地熱能開發(fā)與應用技M.北京:化學工業(yè)出版社,2006.
[2]汪集,馬偉斌,龔宇烈.地熱利用技M.北京:化學工業(yè)出版社, 2 005.
[3]周曉波,高溫地源熱泵技術及其在工程中的應用J.工程建設與設計,
2004,6:8 -10.
[4]林麗,鄭秀華,詹美萍,地熱能源利用現(xiàn)狀及發(fā)展前景J資源與產(chǎn)業(yè),
2006,6:21-23.
[5]范萍萍,端木琳,王學龍,尉建中.土壤源熱泵的發(fā)展與研究現(xiàn)狀J.煤氣與熱力, 2005,10:66-69.
[6]吳逸飛,陳楊飛,楊家興.地源熱泵在空調中應用的探討J.江西能源,
2005 , 3: 5 - 8.
[7]戴源德,韓道福,徐明發(fā).地熱空調的研究現(xiàn)狀及應用前景J.節(jié)能,2002,11:7-9.
[8]黃奕沄,陳光明,張玲.地源熱泵研究與應用現(xiàn)狀J.制冷空調電力機械,2003,1:6-9.
[9] Devotta S,Gopichand S,Pendyala R V.Comparative assessment of some HCFCs,HFCs and HFEs as alternative to CFCll.Int J Refrig,17(1):32~39
[10] Mongey B,Hewitt N J,McMullan J T. R407C as an alternative to R22 in refrigeration systems.Int J of Energy Research,1996,20(3):245~254
[11] Chert J F,Kruse H.Pressure-enthalpy diagrams for alternative refrigerants.ASHRAE Journal.1996.38(10):2483~2491
[12] Yin J M,Park Y C,McEnaney R P.et a1.Experimental comparison of mobile A/C systems when operated with transcritical CO,versus R134a and R410A system performance.Proceeding ofIIR Conference Gustav Lorentzen,Oslo,1998,331~340
[13] 朱明善.2l世紀制冷空調行業(yè)綠色環(huán)保制冷劑的趨勢與展望[J].暖通空調,2000,(30)
[14] 王鑫,于修源,呂剛,于洪樣.堡魚劍鹼趔的筮星皇座旦趨墊[J].有機氟工業(yè),2007,(30)
[15] NIST(National Institute of Science and Technology)standard reference Datebase 23.REFPROP Version 6.0.1998
[16] 梁曉東.一種替代R410A的制冷劑的特性及應用前景分析[M].見:中國制冷學會.2005年制冷空調學術年會論文集.中國昆明:2005.212—215
[17] Donald B B.Barbara H.M. F1uoroethers and other next generation fluids.Int J Refrig,1998,21(7):567~576
[18] 何茂剛.劉志剛,趙小明.新型環(huán)保制冷劑氟化醚類物質的熱力學分析[N].工程熱物理學報,2000,21(1):4~6