壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
任務(wù)書
任務(wù)下達(dá)日期:20** 年 2 月 28 日
畢業(yè)設(shè)計日期: 20** 年 3 月 7 日至 20** 年 6 月 10 日
畢業(yè)設(shè)計題目:大采高支撐掩護(hù)式液壓支架設(shè)計
畢業(yè)設(shè)計專題題目:
畢業(yè)設(shè)計主要內(nèi)容和要求:
畢業(yè)論文的主要內(nèi)容:
1、 根據(jù)所給參數(shù)進(jìn)行液壓支架的選型和各結(jié)構(gòu)參數(shù)的設(shè)計;
2、 對液壓支架的四連桿機(jī)構(gòu)進(jìn)行分析,計算并優(yōu)化;
3、 對所設(shè)計的支架的主要部件進(jìn)行受力分析和強(qiáng)度校核;
畢業(yè)設(shè)計的要求:
1、 完成圖紙量至少3張半A0圖紙;
2、 獨(dú)立編寫畢業(yè)設(shè)計計算說明書;
院長簽字: 指導(dǎo)教師簽字:
翻譯部分
英語原文
A Study on the Remote Monitoring System of Hydraulic Support Based on 3DVR
Yan Haifeng, Su Fengxiang,Cheng Zhihong ,Du Changlong
The school of Mechanical and Electrical Engineering China University of Mining and
Technology XuZhou JiangSu
Abstract
The framework of hydraulic support remote monitoring system for fully-mechanized coalface is investigated in this paper. The three-dimensional virtualreality technology (3DVR) is applied to the control of hydraulic support and the OPC (OLE for process control) communication technology) is used to obtain the important sensing data of hydraulic support,meanwhile, by using dynamics analysis and rapid solution based on intelligent algorithm, the virtual prototyping modeling of hydraulic support is driven. As a result, the hydraulic support working conditions reappeared synchronously and truly, the hydraulic support working process is remotely controlled.
1. Introduction
Hydraulic support is the main equipment of mechanized mining. Its function is not only to support the roof, maintain the space for safe operation, but also shift face conveyor and coal cutter. Therefore,monitoring the hydraulic working conditions and
performance to improve the support reliability is one of the key factors for the mechanized mining successfully.However, coal production environment of mechanized mining face is very bad and the force of the hydraulic support is unusually complicated. Currently, the site pressure monitoring is often used under a heavy working load and in a severe environment, but the quality of remote video monitoring image is much poor.General remote monitoring system uses plane interface so that site conditions cannot be fully reflected. Using the combination of virtual reality visualization with automatic remote monitoring can make control personnel to have a sense of immersive and thus they may judge accurately so that potential accidents will be eliminated and mine safety production and management will be promoted. This kind of technology can also be used to train miners who will be personally on the scene to experience and learn taking effective emergency measures to deal with dangerous situations in order to enhance the quality of personnel [1].
2. System Framework
The system structure consists of four layers, from the bottom to top as follows: device layer, local control layer, network communication layer and HCI (humancomputer interaction) layer (Figure 1).
2.1. Device Layer
Device layer, the final implementation part of the system, is at the bottom of the whole system. It is responsible for action implementation and data collection, mainly formed with hydraulic support, electro-hydraulic valve group and various types of sensors. Take two-leg shield support as an example, electro-hydraulic valve group includes 5 to 8 three position four-way electro-hydraulic valve to control legs, balanced jack, forepoling jack, spalling-rib protection jack, side protection jack, push slip jack and bottom lift jack. The sensors mainly collect the following data: legs pressures, balanced jack pressures, push conveyor jack displacement, balanced jack displacement etc..
2.2. Local Control Layer
Local control layer, the key control layer of the system, controls the devices on the device layer and processes collected data mainly through deciding programs.
The local PLC controller, made by the highperformance large-scale PLC (such as the S7-400) and 913 related modules, is placed along the tank. As the master (controllers located on every hydraulic support) viadata Profibus for the coordination among hydraulic supports, between the hydraulic support and coal cutter, the hydraulic supports and the scraper conveyor. Local explosion-proof industrial computer can implementb local monitoring and controlling of hydraulic supports along the underground tank. The support controller uses the embedded system or a small, efficient and reliable PLC (such as the S7-200) to integrate Profibus-DP interface and local control panel, to achieve the collection of various data and movement control of electro-hydraulic valve, thus to control the movement of hydraulic support.
Figure 1. Framework of hydraulic supports remote monitoring system
2.3. Network Communication Layer
Network communication layer is responsible for the communication of upper and lower systems, including OPC Server, Simatic Net to achieve the communication between 3DVR and OPC Server, and Siemens WinCC to achieve the communication between common industrial configuration screen and OPC Server. Local PLC controller communicates with up-ground OPC server through 1000M Industrial Ethernet and fiber optics [2].
2.4. Human-Computer Interaction Layer
Human-computer interaction layer is the top layer of the system, responsible for the display of all hydraulic supports state data, control of the command input and set of the system parameter. Hydraulic support 3DVR remote monitoring platform can run on a high performance PC. Virtual reality technology achieves human-computer interaction through the monitor and keyboard and mouse. It can also be output to the immersive virtual reality environment through highperformance graphics workstations, so that the user has left its sense of its territory. Condition parameters remote monitoring platform uses industrial control configuration software to configure general control configuration screen, easy for general users’ remote control operation. Historical data and alarm data go into SQL Server for archiving, easy to inquire and analyze.
3. Achievement of hydraulic support 3DVR remote monitoring platform
The sensing test data which will be used in the process control of hydraulic support is inputted in longrange high-performance computers adopting OPC communications technology. By using dynamics analysis and rapid solution based on intelligent algorithm, the virtual prototyping model of hydraulic support is operated. Upper manual remote control commands are issued through the OPC at the scene of physical hydraulic support, thus three-dimensional virtual reality technology is used in hydraulic remote process control. As a result, the hydraulic support working conditions are synchronously truly reappeared and the hydraulic support working process is remotely controlled.
3.1. Virtual reality scene modeling
Establishing the scene of virtual reality needs a large number of 3D models. Direct programming model isclearly unrealistic. 3D software (such as 3DS Max,Maya, etc.) could be adopted to establish model into virtual reality development platform and join the interactive effects. Hydraulic Support 3DVR (3DVirtual Reality) remote monitoring system mainly uses Virtools4.0 as the virtual reality development platform.
Virtools4.0 is a 3D virtual reality software platformn developed by the French Dassault company on the basis of the latest PCS (Product-Context-Scenario) platform.Virtools can create high-quality visual effects and interactive content work through visual flowchart script interface and a powerful integrated rendering engine.
Using SDK (Software Development Kit) and VSL (Virtools Scripting Language), you can create userdefined interactive scripts and applications through the corresponding API interface[3].
We use design department UG and SolidWorks design model with simple processing to import 3D max rendering given material and make the model more realistic, output to the Virtools as a virtual scene model,adopt graphical interactive programming in Virtools to achieve all hydraulic support actions (raise, drop, push conveyor, Surport shift, etc.), and use father-sonrelations between 2D Frame as well as module combinations to achieve control panel buttons and drop-down menu (Figure 2).
Figure 2. Three-dimensional virtual scene and
the control panel
3.2. Dynamics Analysis of Hydraulic support
Dynamics analysis engine of hydraulic support is the core of the system. It uses multi-body dynamics,kinematics, hydraulics, surrounding rock control etc.theories to establish nonlinear system models,integrates a variety of transmission sense data from OPC Server, adopts advanced genetic algorithm as a solving strategy, calculates and analyzes with highperformance computing platform, provides information of current location of every component to virtual hydraulic support.
The main part of two legs shield support is a parallel mechanism possessing two freedom degree, which can be established a equation group through the analysis,taking the leg’s length S1 and balanced-jack’s length S2 as independent variables, angles of all components(front link, hinder link, leg, balanced-jack, goaf shield,and canopy) as unknown variables. So as long as the leg’s length and balanced-jack’s length are monitored by the displacement sensor, we can solve the current work gesture of hydraulic support. But the equation group is a set of nonlinear equation, the genetic algorithm of efficient search is required. At the same time, the force status of the hydraulic support components can be obtained monitoring the pressure of leg and balanced jack through the pressure sensor.
3.3. Communication between OPC Sever and the Virtools
OPC (OLE for Process Control) is used for process control, taking OLE / COM system as the industrial communication standard of an application program,OPC provides a unified open interface for every dispersed sub-subsystem in the control area to solve the problems of sharing data among distributed subsystems of real-time monitoring system and unifying and coordinating control commands corresponding [4].
Communication module between OPC Sever and Virtools is another key module of the system. We apply the Virtools SDK technology, use Visual C++. Net 2003 program, develop the Virtools OPC Sever communications module. The module gets the information needed for dynamics analysis module from OPC Sever, and then real time drives actions of virtual 3D hydraulic support in Virtools Dev, writes the control command that virtual control panel issued to OPC Sever in order to control the local physical hydraulic Support.
4. Conclusion
Although the application of VR in coal mine is still at the initial stage, with the improvement of the coal mining technology and mine safety increasingly, using the combination of visual virtual reality technology and industrial automation remote monitoring technology can promote mine safety production and management.It will be used more and more in coal production, and gradually infiltrated into all levels. The research in this area has broad prospects in the coal mine and other industries.
References
[1] H.F.Yan,M.Gong ,D.F.Tang , “Development of the virtual reality system for hydralic supports on the full Mechanized mining face based on Virtools4.0” , Ming &
Processing Equipment,LuoYang HeNan,2009,pp.14-16
[2]??Siemens, “OPC - Open Connectivity ” , WinCC Online Help
[3] Dassault Systemes, 3DVIA Virtools 4.0 Online Reference
[4] OPC Foundation, “About OPC”,
[5] Z.J.Wang,Y.J.Wang,Y.M.Fu, “The system of mine 3D visual modeling and navigation based on visual reality technology”, Engineering of Surveying and
Mapping,HeiLongjiang,2006,pp.44-47
中文翻譯:
基于3DVR的液壓支架遠(yuǎn)程監(jiān)控系統(tǒng)的研究
摘要: 在本文中液壓支架遠(yuǎn)程監(jiān)控系統(tǒng)的框架是為了研究綜采工作面。三維虛擬現(xiàn)實(shí)技術(shù)(3DVR)被應(yīng)用到液壓支架的控制和OPC(OLE程序控制)通信技術(shù)用來獲取液壓支架重要的遙感數(shù)據(jù)。同時,利用動力學(xué)分析和利用智能算法快速的解決了對液壓支架虛擬的原型建模。這樣液壓支架的工作條件被同步的真實(shí)的再現(xiàn),液壓支架工作過程也被遠(yuǎn)程操控。
1. 簡介
在機(jī)械化開采中液壓支架是主要的設(shè)備。它的作用不僅是支撐頂板, 還為安全操作提供了一個空間,而且也能移動輸送機(jī)和采煤機(jī)。因此,監(jiān)測液壓支架的工作條件和提高液壓支架可靠性是成功的機(jī)械化開采最重要的關(guān)鍵因素之一。然而,機(jī)械化采煤工作面生產(chǎn)環(huán)境是非常差的。并且液壓支架的受力通常是很復(fù)雜的。目前,壓力監(jiān)測點(diǎn)經(jīng)常是在沉重的工作負(fù)荷和惡劣的環(huán)境下,而且遠(yuǎn)程視頻監(jiān)控圖像質(zhì)量是非常差的。一般的遠(yuǎn)程監(jiān)控系統(tǒng)采用平面界面。所以,不能充分反映現(xiàn)場條件。虛擬現(xiàn)實(shí)可視化技術(shù)與自動遠(yuǎn)程監(jiān)測的結(jié)合使用可以使操作人員有一種強(qiáng)烈的感官效果,因此他們能準(zhǔn)確的判斷并消除潛在的事故和提高礦山安全生產(chǎn)和管理。這種技術(shù)也可以用來訓(xùn)練礦工讓他們身臨其境來獲得現(xiàn)場經(jīng)驗(yàn)和學(xué)習(xí)采取有效的緊急措施來對付危險的情況這樣來提高人員的能力[1]。
2.體系框架
該系統(tǒng)的體系結(jié)構(gòu)包括四層,從最底層到最高層如下:設(shè)備層、局部控制層、網(wǎng)絡(luò)通訊層和HCI(人機(jī)交互)層(圖1)。
圖1.液壓支架遠(yuǎn)程監(jiān)控系統(tǒng)的框架
2.1設(shè)備層
設(shè)備層, 是系統(tǒng)最后實(shí)施的部分、是整個系統(tǒng)的最底層。它是負(fù)責(zé)實(shí)施行動和數(shù)據(jù)收集、主要包括液壓支架,電液閥組和各種類型的傳感器。以兩柱掩護(hù)式液壓支架為例,電液閥組包括5至8個三位四通電液換向閥來控制立柱,平衡千斤頂,前梁千斤頂,護(hù)幫千斤頂,側(cè)推千斤頂,推移千斤頂,抬底千斤頂。傳感器主要收集下列數(shù)據(jù):立柱壓力,平衡千斤頂?shù)膲毫?推移千斤頂位移、平衡千斤頂位移等。
2.2局部控制層
局部控制層,是系統(tǒng)最關(guān)鍵的控制層、主要是通過程序控制設(shè)備層的設(shè)備和所收集數(shù)據(jù)的過程。局部的PLC控制器,由高性能大規(guī)模可編程邏輯控制器PLC(如S7-400)和相關(guān)的模塊組成,被放置在箱體里。作為主控控制器,它通過Profibus總線的數(shù)據(jù)與下一級的控制器交流(控制器是放在每個液壓支架上)為了協(xié)調(diào)液壓支架,液壓支架和采煤機(jī),液壓支架和刮板輸送機(jī)。局部防爆的工業(yè)計算機(jī),能夠很好地實(shí)現(xiàn)局部的監(jiān)測和控制沿著地下水槽的液壓支架。液壓支架控制器采用嵌入式的系統(tǒng)或者一個很小的、高效的可靠的PLC(如s7 - 200系列)Profibus –DP接口和局部控制面板相結(jié)合,來實(shí)現(xiàn)收集變量和控制電液閥的位移,從而來控制液壓支架的運(yùn)動。
2.3網(wǎng)絡(luò)通信層
網(wǎng)絡(luò)通信層主要負(fù)責(zé)上位機(jī)、下位機(jī)通信的系統(tǒng),包括OPC Server、Simatic網(wǎng)絡(luò)實(shí)現(xiàn)了3DVR與 OPC Server之間通信,西門子的WinCC實(shí)現(xiàn)了工業(yè)配置屏幕和OPC Server之間的溝通。局部的PLC控制器與 OPCserver通過1000兆工業(yè)以太網(wǎng)和纖維光學(xué)進(jìn)行傳達(dá)[2]。
2.4人機(jī)交互層
人機(jī)交互層是該系統(tǒng)最上的一層,負(fù)責(zé)顯示所有液壓支架的狀態(tài)數(shù)據(jù)、輸入命令的控制和一系列的系統(tǒng)參數(shù)。液壓支架3DVR的遠(yuǎn)程監(jiān)控平臺可以在一個高性能的電腦上運(yùn)行。虛擬現(xiàn)實(shí)技術(shù)可以通過監(jiān)測、鍵盤、鼠標(biāo)來實(shí)現(xiàn)人機(jī)交互。它也可以通過高性能圖形工作站輸出虛擬的現(xiàn)實(shí)環(huán)境,這樣用戶留下其對領(lǐng)域的感知。遠(yuǎn)程監(jiān)控平臺的條件參數(shù)是利用工業(yè)控制組態(tài)軟件來配置一般控制的配置屏幕,對于一般用戶很容易實(shí)現(xiàn)遠(yuǎn)程控制操作。歷史的數(shù)據(jù)和重要的數(shù)據(jù)被送到SQL服務(wù)器,這樣易于查詢和分析。
3.液壓支架3DVR遠(yuǎn)程監(jiān)控平臺的成就
液壓支架控制過程的傳感測試數(shù)據(jù)被大量的輸入到采用OPC通信技術(shù)的高性能計算機(jī)里。利用動力學(xué)分析和智能算法的快速解決方案,完成了液壓支架的虛擬樣機(jī)模型。上面手動遠(yuǎn)程控制命令通過OPC發(fā)送到現(xiàn)場的液壓支架,從而三維的虛擬現(xiàn)實(shí)技術(shù)被用于液壓支架遠(yuǎn)程過程控制。這樣,液壓支架工作條件被同步的真實(shí)再現(xiàn)并且液壓支架工作過程被遠(yuǎn)程控制。
3.1虛擬現(xiàn)實(shí)場景模型
建立現(xiàn)場的虛擬現(xiàn)實(shí)需要大量的3D模型。直接的編程模型是顯然不切實(shí)際的??梢允褂?D軟件(如3DS Max,Maya,等等。),在虛擬現(xiàn)實(shí)開發(fā)平臺中建立模型,并且參與交互作用。液壓支架的3DVR(3D虛擬現(xiàn)實(shí))遠(yuǎn)程監(jiān)控系統(tǒng)主要使用Virtools4.0作為虛擬現(xiàn)實(shí)開發(fā)平臺。
Virtools4.0是一個3D虛擬實(shí)境軟件平臺由法國達(dá)索公司在最新的PCS(Product-Context-Scenario)平臺的基礎(chǔ)上開發(fā)的。Virtools可以打造高品質(zhì)的視覺效果并且通過視覺流程圖的腳本交互內(nèi)容工作界面和一個強(qiáng)大的集成的渲染引擎。使用SDK(軟件開發(fā)工具包)和VSL (Virtools Scripting Language),你通過相應(yīng)的API接口[3]可以創(chuàng)建用戶自定義的交互腳本和應(yīng)用。
我們使用UG和SolidWorks設(shè)計部門通過引進(jìn)的3D max渲染的特定材料和形象的制造模型和簡單加工,輸出到Virtools作為一個虛擬場景模型,采用Virtools的圖形交互程序來實(shí)現(xiàn)所有液壓支架的運(yùn)動(升柱,降柱,推溜、變換支撐位置等),并使用父子關(guān)系的2D模型以及模塊組合來完成控制面板的按鈕和下拉菜單(圖2)。
圖2.三維虛擬場景和控制面板
3.2液壓支架的動力學(xué)分析
液壓支架動力學(xué)分析引擎是該系統(tǒng)的核心。它采用多體動力學(xué)、運(yùn)動學(xué)、水力學(xué)、圍巖控制學(xué)等。建立非線性系統(tǒng)理論模型,從OPC Sever上集多種傳播意義上的數(shù)據(jù),采用先進(jìn)的遺傳算法作為一種解決問題的策略,計算并分析了高性能計算平臺,提供虛擬液壓支架的每一個組件目前的位置信息。
掩護(hù)式液壓支架最重要的部分是一個并聯(lián)機(jī)構(gòu)它擁有兩個自由度,進(jìn)而能通過建立一個方程組來分析,以立柱的長度S1和平衡千斤頂長度S2作為自變量,所有部件的角度(前連桿,后連桿,立柱,平衡千斤頂,掩護(hù)梁,和頂梁)為未知變量。所以只要由位移傳感器監(jiān)測到立柱和平衡千斤頂?shù)拈L度,我們就可知道液壓支架當(dāng)前工作位置。但是這個方程組是一系列非線性方程,需要使用高效的遺傳搜索算法。同時, 液壓支架組件的受力情況可以通過壓力傳感器監(jiān)測立柱和平衡千斤頂?shù)膲毫慝@得。
3.3 OPC Sever和Virtools之間的交流
OPC(用于過程控制的OLE) 用于過程控制,以O(shè)LE / COM (部件對象模型)系統(tǒng)為一個工業(yè)的應(yīng)用程序通訊標(biāo)準(zhǔn),OPC給出了一整套統(tǒng)一的開放的接口,為每一個分散在控制領(lǐng)域各子系統(tǒng)解決了實(shí)時監(jiān)控的數(shù)據(jù)共享,各子系統(tǒng)需要統(tǒng)一協(xié)調(diào)相應(yīng)控制指令的問題[4]。
OPC Sever與Virtools之間的通訊模塊是系統(tǒng)另一種關(guān)鍵模塊。我們申請SDK Virtools 的技術(shù),使用C + +。Net 2003 程序 ,大力發(fā)展Virtools OPC Sever通信模塊。這個模塊從OPC服務(wù)器上得到了針對動態(tài)分析模塊所需的信息,然后在Virtools開發(fā)上實(shí)時驅(qū)動虛擬的三維液壓支架的運(yùn)動,在虛擬控制面板上寫下控制命令, 發(fā)給OPC Sever為了來控制局部的液壓支架。
4. 結(jié)論
雖然在煤礦VR的應(yīng)用仍然還在在初步階段。,隨著采煤技術(shù)和礦山安全的不斷提高,視覺虛擬現(xiàn)實(shí)技術(shù)及工業(yè)自動化遠(yuǎn)程監(jiān)控技術(shù)的結(jié)合使用可以提高礦山安全生產(chǎn)和經(jīng)營活動。它將會越來越多地使用在煤炭生產(chǎn),并各級逐漸潛入。在煤礦和其他工業(yè)這片領(lǐng)域的研究具有更廣闊的前景。
參考文獻(xiàn):
[1]M.Gong H.F.Yan,D.F.Tang,“基于Virtools4.0有關(guān)機(jī)械化開采工作面液壓支架的虛擬現(xiàn)實(shí)系統(tǒng)的發(fā)展”,明&設(shè)備加工,洛陽河南,2009,pp.14-16。
[2]西門子,“OPC技術(shù)的開放式連接” WinCC在線幫助。
[3]法國達(dá)索公司,3DVIA Virtools 4.0在線參考。
[4]OPC技術(shù)基礎(chǔ),“關(guān)于OPC技術(shù)”。
[5]Y.J.Wang Z.J.Wang,Y.M.Fu, “三維視覺建模和基于視覺現(xiàn)實(shí)技術(shù)導(dǎo)航的礦山系統(tǒng)", 測繪工程,黑龍江,2006,pp.44-47。