附錄 ASpin control for carsStability control systems are the latest in a string of technologies focusing on improved diriving safety. Such systems detect the initial phases of a skid and restore directional control in 40 milliseconds, seven times faster than the reaction time of the average human. They correct vehicle paths by adjusting engine torque or applying the left- or-right-side brakes, or both, as needed. The technology has already been applied to the Mercedes-Benz S600 coupe.Automatic stability systems can detect the onset of a skid and bring a fishtailing vehicle back on course even before its driver can react. Safety glass, seat belts, crumple zones, air bags, antilock brakes, traction control, and now stability control. The continuing progression of safety systems for cars has yielded yet another device designed to keep occupants from injury. Stability control systems help drivers recover from uncontrolled skids in curves, thus avoiding spinouts and accidents. Using computers and an array of sensors, a stability control system detects the onset of a skid and restores directional control more quickly than a human driver can. Every microsecond, the system takes a “snapshot,“ calculating whether a car is going exactly in the direction it is being steered. If there is the slightest difference between where the driver is steering and where the vehicle is going, the system corrects its path in a split-second by adjusting engine torque and/or applying the cat's left- or right-side brakes as needed. Typical reaction time is 40 milliseconds - seven times faster than that of the average human. A stability control system senses the driver's desired motion from the steering angle, the accelerator pedal position, and the brake pressure while determining the vehicle's actual motion from the yaw rate (vehicle rotation about its vertical axis) and lateral acceleration, explained Anton van Zanten, project leader of the Robert Bosch engineering team. Van Zanten's group and a team of engineers from Mercedes-Benz, led by project manager Armin Muller, developed the first fully effective stability control system, which regulates engine torque and wheel brake pressures using traction control components to minimize the difference between the desired and actual motion. Automotive safety experts believe that stability control systems will reduce the number of accidents, or at least the severity of damage. Safety statistics say that most of the deadly accidents in which a single car spins out (accounting for four percent of all deadly collisions) could be avoided using the new technology. The additional cost of the new systems are on the order of the increasingly popular antilock brake/traction control units now available for cars. The debut of stability control technology took place in Europe on the Mercedes-Benz S600 coupe this spring. Developed jointly during the past few years by Robert Bosch GmbH and Mercedes-Benz AG, both of Stuttgart, Germany, Vehicle Dynamics Control (VDC). in Bosch terminology, or the Electronic Stability Program (ESP), as Mercedes calls it, maintains vehicle stability in most driving situations. Bosch developed the system, and Mercedes-Benz integrated it into the vehicle. Mercedes engineers used the state-of-the-art Daimler-Benz virtual-reality driving simulator in Berlin to evaluate the system under extreme conditions, such as strong crosswinds. They then put the system through its paces on the slick ice of Lake Hornavan near Arjeplog, Sweden. Work is currently under way to adapt the technology to buses and large trucks, to avoid jack-knifing, for example. Bosch is not alone in developing such a safety system. ITT Automotive of Auburn Hills, Mich., introduced its Automotive Stability Management System (ASMS) in January at the 1995 North American International Auto Show in Detroit. “ASMS is a quantum leap in the evolution of antilock brake systems, combining the best attributes of ABS and traction control into a total vehicle dynamics management system,“ said Timothy D. Leuliette, ITT Automotive's president and chief executive officer. “ASMS monitors what the vehicle controls indicate should be happening, compares that to what is actually happening, then works to compensate for the difference,“ said Johannes Graber, ASMS program manager at ITT Automotive Europe. ITT's system should begin appearing on vehicles worldwide near the end of the decade, according to Tom Mathues, director of engineering of Brake another pair, which is displaced by 90 degrees, stabilizes the vibration. At both element pairs in between, so-called vibration nodes shift slightly depending on the rotation of the car about its vertical axis. If there is no yaw input, the vibration forms a standing wave. With a rate input, the positions of the nodes and antinodes move around the cylinder wall in the opposite direction to the direction of rotation (Coriolis acceleration). This slight shift serves as a measure for the yaw rate (angular velocity) of the car. Several drivers who have had hands-on experience with the new systems in slippery cornering conditions speak of their cars being suddenly nudged back onto the right track just before it seems that their back ends might break away. Some observers warn that stability controls might lure some drivers into overconfidence in low-friction driving situations, though they are in the minority. It may, however, be necessary to instruct drivers as to how to use the new capability properly. Recall that drivers had to learn not to “pump“ antilock brake systems. Although little detail has been reported regarding next-generation active safety systems for future cars (beyond various types of costly radar proximity scanners and other similar systems), it is clear that accident-avoidance is the theme for automotive safety engineers. “The most survivable accident is the one that never happens,“ said ITT's Graber. “Stability control technology dovetails nicely with the tremendous strides that have been made to the physical structure and overall capabilities of the automobile.“ The next such safety system is expected to do the same.附錄 B汽車的轉(zhuǎn)向控制控制系統(tǒng)穩(wěn)定性是針對(duì)提高駕駛安全性提出的一系列措施中最新的一個(gè)。這個(gè)系統(tǒng)能夠在 40 毫秒內(nèi)實(shí)現(xiàn)從制動(dòng)開始到制動(dòng)恢復(fù)的過程,這個(gè)時(shí)間是人的反應(yīng)時(shí)間得七倍。他們通過調(diào)整汽車扭矩或者通過應(yīng)用汽車左側(cè)或右側(cè)制動(dòng),如果需要甚至兩者兼用,來實(shí)現(xiàn)準(zhǔn)確的行車路線。這個(gè)系統(tǒng)已被應(yīng)用于奔馳 S600 汽車了。穩(wěn)定的機(jī)械自動(dòng)系統(tǒng)能夠在制動(dòng)時(shí)發(fā)現(xiàn)肇端,并且在駕駛?cè)藛T發(fā)現(xiàn)能夠反應(yīng)以前實(shí)現(xiàn)車輛的減速。安全玻璃,安全帶,撞擊緩沖區(qū),安全氣囊,ABS 系統(tǒng),牽引力控制系統(tǒng)還有現(xiàn)在的穩(wěn)定調(diào)節(jié)系統(tǒng)。汽車安全系統(tǒng)的連續(xù)升級(jí),已經(jīng)產(chǎn)生了一種為保護(hù)汽車所有者安全的設(shè)計(jì)模式。穩(wěn)定調(diào)節(jié)系統(tǒng)幫助駕駛員從不可控制的曲線制動(dòng)中解脫出來,從而避免了汽車的擺動(dòng)滑行和交通事故。利用計(jì)算機(jī)和一系列傳感器,穩(wěn)定調(diào)節(jié)系統(tǒng)能夠檢測(cè)到制動(dòng)輪的打滑并且比人更快的恢復(fù)對(duì)汽車的方向控制。系統(tǒng)每百萬分之一秒作出一次快速捕捉,以及斷斷汽車是否在按照駕駛員的路線行駛。如果檢測(cè)到汽車行駛路線和駕駛員駕駛路線存在一個(gè)微小的偏差 ,系統(tǒng)會(huì)在瞬間糾正發(fā)動(dòng)機(jī)扭矩或者應(yīng)用汽車左右制動(dòng)。過程的標(biāo)準(zhǔn)反應(yīng)時(shí)間是 40 毫秒----人的平均反應(yīng)時(shí)間的七分之一。羅伯特博世工程系統(tǒng)負(fù)責(zé)人安東·范·桑特解釋說:“一個(gè)穩(wěn)定的控制系統(tǒng)能夠‘感覺到”駕駛員想要運(yùn)動(dòng)的方向,通過控制轉(zhuǎn)向角度,油門踏板的位置,制動(dòng)板的狀態(tài)來確定汽車實(shí)際運(yùn)動(dòng)路線的偏航比率(汽車偏離方向軸的角度)和橫向加速度”。項(xiàng)目負(fù)責(zé)人阿明·馬勒領(lǐng)導(dǎo)著范桑特的工作小組和奔馳汽車公司的工程師發(fā)明了第一個(gè)完全有效的穩(wěn)定調(diào)節(jié)系統(tǒng),該系統(tǒng)由發(fā)動(dòng)機(jī)扭矩控制系統(tǒng),制動(dòng)系統(tǒng),牽引控制系統(tǒng)組成以實(shí)現(xiàn)理想與現(xiàn)實(shí)運(yùn)動(dòng)之間的最小差距。汽車安全專家相信穩(wěn)定調(diào)節(jié)系統(tǒng)能夠減少交通事故的發(fā)生,至少是在傷亡嚴(yán)重的事故方面。安全統(tǒng)計(jì)表明,多數(shù)的單車撞擊事故傷亡(占傷亡事故發(fā)生的 4%),事故能夠通過應(yīng)用這項(xiàng)新技術(shù)避免。這項(xiàng)新系統(tǒng)的額外費(fèi)用主要用于一系列目前汽車日益普遍應(yīng)用的制動(dòng)/牽引控制鎖組件。穩(wěn)定調(diào)節(jié)系統(tǒng)技術(shù)首次應(yīng)用于歐洲的奔馳 S600 汽車,是由德國(guó)斯圖加特市的羅伯特博世公司和奔馳公司在過去幾年共同研制的。該系統(tǒng)在博世公司被稱為汽車動(dòng)力控制(VDC),而默西迪稱它為穩(wěn)定電控系統(tǒng)(ESP),作用就是在任何狀況下維持車輛的穩(wěn)定性。博世公司開發(fā)了這項(xiàng)系統(tǒng),奔馳公司把它應(yīng)用于車輛。工程師默西迪絲在柏林應(yīng)用戴姆勒奔馳汽車虛擬駕駛模擬器在極限情況下對(duì)系統(tǒng)進(jìn)行評(píng)估,例如極強(qiáng)的側(cè)風(fēng)。然后他們?cè)谌鸬涞陌步芷談诟浇暮竽韧甙埠谋嫔线M(jìn)行性能測(cè)試。工作通常是在公路上進(jìn)行以適用于公共汽車和大卡車,例如避免的折合問題。穩(wěn)定調(diào)節(jié)系統(tǒng)將在 1995 年中應(yīng)用于歐洲 S 系列產(chǎn)品上,隨后會(huì)在 1996 年進(jìn)入美國(guó)市場(chǎng)(1995 年 11 月產(chǎn)品)。用戶可以選擇 750 美元的系統(tǒng),就像應(yīng)用于梅賽德斯的試驗(yàn)用的V8 發(fā)動(dòng)機(jī)上的,也可以選擇價(jià)格為 2400 美元的應(yīng)用于六缸發(fā)動(dòng)機(jī)汽車的系統(tǒng)。后者的系統(tǒng)中差不多有 1650 美元是用于牽引控制系統(tǒng),該系統(tǒng)是穩(wěn)定性系統(tǒng)的先決條件。并不是只有博世公司一家在開發(fā)這樣的安全系統(tǒng),美國(guó)密歇根州的 ITT(美國(guó)國(guó)際電信公司)汽車公司的奧伯恩·希爾,在 1995 年 1 月底特律北美國(guó)際汽車展覽會(huì)上展示了管理系統(tǒng)(ASMS),“車輛控制器應(yīng)該像空對(duì)地導(dǎo)彈的控制器那樣,比較而言,事實(shí)上那已經(jīng)實(shí)現(xiàn)了,不同的是兩者的費(fèi)用不同”,美國(guó)國(guó)際電信公司駐歐洲空對(duì)地導(dǎo)彈控制工程負(fù)責(zé)人約翰尼斯·格雷得說。北美 ITT 公司“汽車制動(dòng)和底盤工程”主管湯姆·麥茲指出,在未來十年美國(guó)國(guó)際電信公司的系統(tǒng)要首先出現(xiàn)在車輛上。很多工程師正在六輛特殊制造的精密車輛模型上調(diào)試這種系統(tǒng)。一個(gè)比較簡(jiǎn)單和較低效率的博世的穩(wěn)定調(diào)節(jié)系統(tǒng)也在 1995 年出現(xiàn)在慕尼黑寶馬公司的AG 系列 750iL 和 850Ci V-12 兩款車上。寶馬公司的穩(wěn)定調(diào)節(jié)系統(tǒng)(DSC)運(yùn)用的車輪速度傳感器同牽引控制系統(tǒng)和標(biāo)準(zhǔn) ABS 防抱死系統(tǒng)一樣能夠識(shí)別外部情況,使車輛更容易實(shí)現(xiàn)曲線行駛和轉(zhuǎn)彎。為了檢測(cè)出車輛轉(zhuǎn)彎時(shí)潛在的危險(xiǎn),DSC 系統(tǒng)檢測(cè)的是兩前輪在轉(zhuǎn)彎時(shí)的速度差,DSC 系統(tǒng)添加了一個(gè)更高級(jí)的角度傳感器利用現(xiàn)有的一個(gè)車輛速度,并且引入了它自身帶有的關(guān)于完全抱死系統(tǒng),牽引控制系統(tǒng),穩(wěn)定調(diào)節(jié)系統(tǒng)軟件控制原理。新的博世和 ITT 自動(dòng)穩(wěn)定調(diào)節(jié)系統(tǒng)得益于航空工業(yè)高級(jí)技術(shù)的發(fā)展,就像超音速發(fā)動(dòng)機(jī),汽車的穩(wěn)定調(diào)節(jié)單元運(yùn)用一個(gè)基于計(jì)算機(jī)系統(tǒng)的傳感器來調(diào)和人與系統(tǒng)之間的,還有輪胎與地面之間差異。另外,系統(tǒng)采用了用于導(dǎo)彈制導(dǎo)系統(tǒng)的回旋傳感器。優(yōu)于 ABS 防抱死系統(tǒng)和牽引控制系統(tǒng)之處根據(jù)范·桑特和博世公司的瑞娜·伊哈德,杰瑞·帕夫在《汽車工程師》雜志所提到的,穩(wěn)定調(diào)節(jié)系統(tǒng)是 ABS 防抱死系統(tǒng)和牽引控制系統(tǒng)的合理擴(kuò)展。但是 ABS 系統(tǒng)的作用發(fā)生在制動(dòng)時(shí)車輪轉(zhuǎn)向?qū)⒈绘i死時(shí),牽引控制是預(yù)防加速時(shí)的車輪滑動(dòng),穩(wěn)定系統(tǒng)是當(dāng)汽車自由轉(zhuǎn)向時(shí)能獨(dú)立于駕駛員作出操作。依靠不同的駕駛狀況系統(tǒng)可以使每個(gè)車輪制動(dòng)或者迅速使四個(gè)輪轉(zhuǎn)速適合于發(fā)動(dòng)機(jī)的扭矩,從而使車輛穩(wěn)定和減少由于制動(dòng)失控帶來的危險(xiǎn)。新系統(tǒng)不僅僅控制完全制動(dòng)還可以作用與部分制動(dòng),行車路線,加速度,車輪與發(fā)動(dòng)機(jī)動(dòng)作的滯后等,這些是 ABS 防抱死系統(tǒng)和牽引控制系統(tǒng)所遠(yuǎn)遠(yuǎn)不能達(dá)到的。三種主動(dòng)的安全系統(tǒng)的作用時(shí)刻是一致的,那就是一個(gè)車輪被鎖死或者車輪漸漸失去方向穩(wěn)定性或者車輪使得行駛更加困難。如果一輛車必須在較低摩擦系數(shù)的路面制動(dòng),必須避免車輪抱死以保持行駛穩(wěn)定性和可駕駛性。ABS 防抱死系統(tǒng)和牽引控制系統(tǒng)能夠預(yù)防側(cè)滑,而穩(wěn)定性系統(tǒng)采取減少側(cè)面受力的穩(wěn)定措施。如果行駛車輛的側(cè)力不再適當(dāng)?shù)姆峙湓谝粋€(gè)或者更多輪上,車輛就會(huì)失穩(wěn),尤其是車輛沿曲線行駛時(shí)。駕駛員感覺到的“搖擺”起初是轉(zhuǎn)彎或者與車的軸線形成一個(gè)紡錘形時(shí)。一個(gè)獨(dú)立的傳感器必須能夠識(shí)別這個(gè)“紡錘”,而 ABS 防抱死系統(tǒng)和牽引控制系統(tǒng)通過車輪的轉(zhuǎn)速不能檢測(cè)車輛的橫向運(yùn)動(dòng)。轉(zhuǎn)向操作新系統(tǒng)通過對(duì)微小的汽車不足轉(zhuǎn)向(當(dāng)車輛對(duì)于方向盤操作反應(yīng)遲緩)和方向盤的“過敏”反應(yīng)(后輪發(fā)生來回?cái)[動(dòng))。當(dāng)車輛在轉(zhuǎn)向時(shí)如果發(fā)生不足轉(zhuǎn)向和過度轉(zhuǎn)向運(yùn)動(dòng)時(shí),穩(wěn)定調(diào)節(jié)系統(tǒng)能夠通過后輪進(jìn)行內(nèi)部制動(dòng)(針對(duì)曲線)糾正錯(cuò)誤。這種情況是駕駛員不能感覺類似于 ABS 防抱死系統(tǒng)接近于抱死極限,而使車輛不失去控制。穩(wěn)定調(diào)節(jié)系統(tǒng)能夠通過發(fā)動(dòng)機(jī)降速或者單輪制動(dòng)來減小推動(dòng)力。博世公司的研究員解釋說:“側(cè)面偏離角度表明此時(shí)車輛的偏航靈敏性,并反映為轉(zhuǎn)向角度,轉(zhuǎn)向角度隨著車輛偏離角度的增大而減小。一旦偏離角度超過某一限度,駕駛員就很難重新進(jìn)行操作。在干燥的路面偏離角度不能夠超過 10 度,而在積雪路面上極限偏離角度為 4 度。多數(shù)司機(jī)沒有從制動(dòng)中恢復(fù)的經(jīng)驗(yàn)。他們不知道輪胎和地面之間的摩擦系數(shù),更不知道他們的車的側(cè)緣穩(wěn)定邊界。當(dāng)極限被沖破時(shí),駕駛員通常會(huì)很緊張以至于做出錯(cuò)誤的反應(yīng)。ITT 的格雷柏解釋說:“過度轉(zhuǎn)向引起車輛擺尾,使汽車更快的失控。ASMS 傳感器能夠快速的檢測(cè)到制動(dòng)開始時(shí)各個(gè)車輪的活動(dòng),從而使車輛恢復(fù)到穩(wěn)定行駛軌道。對(duì)于穩(wěn)定調(diào)節(jié)系統(tǒng)界面的可操作性是很重要的,這樣可以預(yù)示帶有穩(wěn)定系統(tǒng)的駕駛和普通駕駛給人的感覺沒有什么區(qū)別。穩(wěn)定系統(tǒng)最大的優(yōu)點(diǎn)在于速度,它不僅可以對(duì)制動(dòng)作出快速反應(yīng),還可以對(duì)車輛狀況(例如車重變化,輪胎磨損),路面質(zhì)量作出快速反應(yīng)統(tǒng)就能夠通過改變側(cè)面受力平橫處理,達(dá)到最好的駕駛穩(wěn)定性。穩(wěn)定系統(tǒng)識(shí)別駕駛員想達(dá)到的(理想路線)和車輛實(shí)際行駛路線(實(shí)際路線)的不同,目前的汽車需要一套高效的傳感器和一臺(tái)高效處理信息的處理器。博世公司的 VDC/ESP 電子控制單元是一個(gè)由兩個(gè) 48 兆的 ROM 組成的傳統(tǒng)實(shí)驗(yàn)電路板。范桑特說:“48KB 的內(nèi)存容量是大量用以完成設(shè)計(jì)任務(wù)的‘智能’的代表”。他在 SAE 中指出。ABS 防抱死系統(tǒng)是獨(dú)立的,只提供四分之一的這樣的容量,而 ABS 和牽引控制系統(tǒng)組合在一起的容量只有這個(gè)軟件容量的一半。除了 ABS 防抱死系統(tǒng)和牽引控制系統(tǒng)所具有的關(guān)系傳感器外,VDC/ESP 運(yùn)用了偏航比率傳感器,橫向加速度傳感器,轉(zhuǎn)向角傳感器,制動(dòng)壓力傳感器來獲取汽車的加速,搖擺或者剎車的信息。系統(tǒng)通過管理員獲得所需的通常的路面信息。方向盤上的傳感器由一組安裝在方向盤上的發(fā)光二極管和光敏二極管上組成。一只硅壓力傳感器通過控制前輪剎車內(nèi)壓力油的壓力控制制動(dòng)壓力(因?yàn)橹栖噳毫碓从隈{駛員)。確定車輛實(shí)際的行駛路線是一項(xiàng)非常復(fù)雜的工作。通過必須的縱向滑動(dòng)車輪速度傳感器提供給反向制動(dòng)或者牽引控制系統(tǒng)的車輪轉(zhuǎn)速信號(hào),以對(duì)可能發(fā)生的動(dòng)作作出精確的分析,無論如何側(cè)向難預(yù)料的運(yùn)動(dòng)分析是必須的,所以系統(tǒng)必須再拓展兩個(gè)額外的傳感器---偏航比率傳感器和側(cè)向加速度傳感器。橫向加速度表檢測(cè)沿曲線行駛時(shí)所帶來的受力狀況。這種類似的傳感器通過一臺(tái)直線霍爾發(fā)電機(jī)把彈簧的直線運(yùn)動(dòng)轉(zhuǎn)變成電信號(hào)來實(shí)現(xiàn)對(duì)彈簧機(jī)構(gòu)的控制。這種傳感器必須很靈敏,它的控制角為±1.4g。偏航比率回轉(zhuǎn)儀最新的穩(wěn)定調(diào)節(jié)系統(tǒng)的核心在于類似于陀螺儀的偏航比率回轉(zhuǎn)儀。傳感器測(cè)量車輛對(duì)豎直軸的旋轉(zhuǎn)。這個(gè)測(cè)量原理來源于航空工業(yè),并且被博施公司大規(guī)模的應(yīng)用于汽車工業(yè)?,F(xiàn)有的回轉(zhuǎn)儀市場(chǎng)提供兩種選擇,一種是應(yīng)用與航空航天業(yè)的價(jià)值 6000 美元(由位于英國(guó)羅徹斯特的美國(guó)通用電器公司航空股份有限公司提供),另一種是用于照相機(jī)的價(jià)值 160 美元。由 SAE 報(bào)得知博施公司采取一種圓柱形設(shè)計(jì)方案以實(shí)現(xiàn)低成本下的高性能。這種傳感器需要一項(xiàng)更大的投資以應(yīng)對(duì)汽車所處的極端環(huán)境狀態(tài)。同時(shí)偏航比率回轉(zhuǎn)儀的價(jià)格必須降低,這樣才能充分應(yīng)用與汽車。偏航比率回轉(zhuǎn)儀有一個(gè)復(fù)雜的內(nèi)部結(jié)構(gòu),其內(nèi)部是有一個(gè)很小的圓柱形鋼管伺服測(cè)量元件。圓柱的薄壁上有壓電元件能夠在 15 千赫茲的頻率下震動(dòng)。四對(duì)這樣的感應(yīng)器安放在圓柱體的周圍,一對(duì)元件的位置與另一對(duì)的位置相對(duì)。其中的一對(duì)通過應(yīng)用正弦電壓引起柱體在其固有頻率下產(chǎn)生共振,并將振動(dòng)傳送給變頻器。在每一對(duì)傳感器之間,振顫節(jié)點(diǎn)繞著汽車的垂直軸作細(xì)微的運(yùn)動(dòng)。這時(shí)如果沒有偏航輸入,震動(dòng)曲線就是一條穩(wěn)定的曲線。如果有信號(hào)輸入,節(jié)點(diǎn)的位置和曲線的波谷就會(huì)在相對(duì)的防線繞著圓筒壁做旋轉(zhuǎn)運(yùn)動(dòng)(科里奧利加速度)。這個(gè)輕微的位移就會(huì)成為汽車偏航比率的度量標(biāo)準(zhǔn)。許多司機(jī)都相互宣傳他們的車輛在光滑轉(zhuǎn)彎處,車尾部將要被甩出去的時(shí)候,新系統(tǒng)會(huì)把車輛“推”回到正確的軌跡上方面的經(jīng)驗(yàn)。 許多觀察員指出,穩(wěn)定調(diào)節(jié)系統(tǒng)可能會(huì)使司機(jī)在較低摩擦力的路面上過分自信,盡管他們占少數(shù)。或許需要指導(dǎo)司機(jī)怎樣來恰當(dāng)?shù)氖褂密囕v穩(wěn)定調(diào)節(jié)系統(tǒng)。就像當(dāng)初讓司機(jī)學(xué)習(xí)不能向防抱死制動(dòng)系統(tǒng)里泵油一樣。雖然只介紹了很少的關(guān)于為未來汽車研制的新一代主動(dòng)安全系統(tǒng)(遠(yuǎn)遠(yuǎn)超過了雷達(dá)掃描儀類似的系統(tǒng)),但避免交通事故仍然是汽車安全工程的主題。美國(guó)國(guó)際電信公司負(fù)責(zé)人指出“當(dāng)穩(wěn)定調(diào)節(jié)技術(shù)伴隨著汽車結(jié)構(gòu)全面性能穩(wěn)步提高的時(shí)候,多數(shù)可避免的事故將不再發(fā)生了”。新一代的安全系統(tǒng)也會(huì)起到同樣的效果。