砂紙生產(chǎn)中砂紙缺陷自動(dòng)檢測(cè)系統(tǒng)的設(shè)計(jì)
砂紙生產(chǎn)中砂紙缺陷自動(dòng)檢測(cè)系統(tǒng)的設(shè)計(jì),砂紙,生產(chǎn),出產(chǎn),缺陷,缺點(diǎn),自動(dòng)檢測(cè),系統(tǒng),設(shè)計(jì)
砂紙生產(chǎn)中砂紙缺陷自動(dòng)檢測(cè)系統(tǒng)的設(shè)計(jì)摘要隨著科技的發(fā)展進(jìn)步,自動(dòng)化的普及,砂紙作為一種生產(chǎn)過程中必備的研磨工具,已實(shí)現(xiàn)生產(chǎn)完全自動(dòng)化。但是其質(zhì)量檢測(cè)仍然采用傳統(tǒng)的目測(cè)法。這種方法成本高,效率低,受主觀性影響,不確定性太大。因此需要一種低成本,高效率,精確的方法代替滯后的目測(cè)法。本文通過對(duì)國(guó)內(nèi)外文獻(xiàn)的研究,提出了基于機(jī)器視覺的砂紙缺陷自動(dòng)檢測(cè)系統(tǒng)的基本思路。砂紙缺陷在線檢測(cè)是在合適的光源下,用攝像器材對(duì)砂紙進(jìn)行圖像采集,用計(jì)算機(jī)對(duì)采集到的圖像進(jìn)行圖像處理,然后對(duì)缺陷自動(dòng)識(shí)別。典型的砂紙缺陷有缺砂、堆砂、折痕、劃痕、破損等。本文完成的主要工作如下:1、簡(jiǎn)介機(jī)器視覺與無(wú)損檢測(cè)的概念與研究現(xiàn)狀。并說(shuō)明無(wú)損檢測(cè)技術(shù)在砂紙缺陷檢測(cè)系統(tǒng)中的應(yīng)用。2、通過對(duì)系統(tǒng)中用來(lái)采集圖像的攝像器材和光源進(jìn)行分析,完成了試驗(yàn)設(shè)備的搭建。系統(tǒng)針對(duì)砂紙缺陷特征的復(fù)雜性,選用了漫反射作為照明方式。3、通過對(duì)圖像處理相關(guān)技術(shù)的學(xué)習(xí)和研究,對(duì)各種圖像處理算法進(jìn)行分析比較,本文采用迭代閾值分割算法,對(duì)采集到的缺陷圖像閾值分割。實(shí)現(xiàn)對(duì)缺砂,堆沙,劃痕的特征提取。4、實(shí)驗(yàn)驗(yàn)證本文提出的適合砂紙的圖像處理算法。經(jīng)實(shí)驗(yàn)驗(yàn)證,該系統(tǒng)能夠在特定情況下完成砂紙表面缺陷的檢測(cè)。關(guān)鍵詞:砂紙,缺陷檢測(cè),機(jī)器視覺,圖像處理THE DESIGN OF AN AUTOMATIC DEFECT SYSTEM FOR DEFECTIONS OF SANDPAPER IN PRODUCTIONABSTRACTWith the development of technology,sandpaper becoming as an fully automatedessential tool in the production.But the quality detection still adopts the traditional method.However,the traditional method is higher cost and lower efficiency which is also influenced by subjectivity feelings.So that we should find another method to instead of that method.An automatic defect detection system based on machine vision for sandpaper is introduced in this paper.CCD-camera is used to collect the images in suitable lighting. Then the defect detection system can be used to identify the defects automatically. The typical defects can be classified into sand lacking, sand accumulation, creases, nick, damage, etc. The concept and researching status about machine vision and non-destructive testing are introduced. Then the appliances of the non-destruction testing technique in the sandpaper defect detection system are illustrated.After that, based on the analysis of the image processing equipment and light source, a test equipment is built in this paper. Additionally, to tackle the complexity of the sandpaper defections, the diffuse reflection is utilized to light the system. Further, based on some corresponding technologies of image processing, the comparison of various image processing algorithms are completed. And in order to extract the features of the sandpaper defects, the iterative threshold segmentation algorithm is presented to cut the images collected.Finally, numerical experiment results are included to validate the proposed suitable image processing algorithms for sandpaper.The experiment results show that, by applying this system, the sandpaper surface defect detection can be completed in certain situations.Key words:Sandpaper, Defect Detection, Machine Vision, Image Procession目 錄1. 緒論.11.1 引言.11.2 砂紙缺陷種類及檢測(cè)現(xiàn)狀.11.3 基于機(jī)器視覺的無(wú)損檢測(cè)技術(shù)概述.21.3.1 機(jī)器視覺21.3.2 無(wú)損檢測(cè)31.4 課題研究?jī)?nèi)容.42. 砂紙缺陷檢測(cè)系統(tǒng)總體設(shè)計(jì)方案.62.1 圖像采集設(shè)備.62.2 光源系統(tǒng).62.3 系統(tǒng)硬件系統(tǒng).73. 砂紙缺陷檢測(cè)的圖像處理.83.1 圖像預(yù)處理83.1.1 RGB 顏色空間83.1.2 彩色圖像灰度轉(zhuǎn)換.83.2 圖像增強(qiáng)83.2.1 中值濾波93.2.2 高斯濾波103.2.3 圓形均值濾波103.3 圖像分割133.3.1 雙峰法143.3.2 迭代閾值分割143.3.3 大津法143.4 圖像的形態(tài)學(xué)運(yùn)算154. 軟件部分仿真實(shí)驗(yàn).214.1 軟件概述.214.2 軟件系統(tǒng)總體框架214.3 主要功能.225. 結(jié)論.25參考文獻(xiàn)27致謝29附錄3011 緒論1.1 引言砂紙,俗稱砂皮,一種常用的磨具。常用來(lái)把金屬、木材表面打磨光滑。根據(jù)砂紙表面使用砂粒的不同,將砂紙分為玻璃砂紙、金剛砂紙、人造金剛砂紙等。砂紙生產(chǎn)過程中,植砂是非常重要的環(huán)節(jié),即將砂粒均勻的涂覆在原紙表面,在這個(gè)環(huán)節(jié)中非常容易出現(xiàn)砂紙缺陷。目前砂紙的生產(chǎn)制造完全實(shí)現(xiàn)自動(dòng)化生產(chǎn),但是產(chǎn)品的質(zhì)量檢測(cè)環(huán)節(jié)還是主要是依靠工人目測(cè)。這種低效率、低產(chǎn)能、高成本、高投入的滯后的檢測(cè)技術(shù)長(zhǎng)期得不到改善。為了在工業(yè)生產(chǎn)中實(shí)現(xiàn)高效,實(shí)時(shí),準(zhǔn)確的砂紙缺陷自動(dòng)檢測(cè),許多國(guó)內(nèi)外生產(chǎn)廠家和研發(fā)人員正在不斷探索。1.2 砂紙缺陷種類及檢測(cè)現(xiàn)狀在實(shí)際生產(chǎn)過程中,任何產(chǎn)品都不會(huì)全部合格。砂紙也不例外,在生產(chǎn)中的任何環(huán)節(jié)都有可能使砂紙出現(xiàn)缺陷。常見砂紙缺陷及產(chǎn)生原因見表 1-1:表 1-1 砂紙缺陷種類及產(chǎn)生原因序號(hào) 缺陷類別 產(chǎn)生原因1 表面鋒利 涂膠量過大;干燥時(shí)間短溫度低未完全干燥;磨料質(zhì)量差2 脫砂 涂膠量過??;干燥時(shí)間不夠溫度過低3 柔軟性差 干燥時(shí)間過長(zhǎng)溫度過高;胺基清漆用量過大4 缺膠缺砂 涂膠混有臟物;膠面劃道;砂箱堵塞25 砂團(tuán) 膠團(tuán);紙面有疙瘩;磨料結(jié)團(tuán);漆皮及雜質(zhì);底膠太厚6 粗粒 磨料中混入粗料;植砂設(shè)備未打掃干凈7 折印 原紙受潮起皺;生產(chǎn)時(shí)張緊力太大或太小;繞卷是過緊過松;干燥不均勻8 透膠 原紙耐水性不好松緊不一;浸漬厚度不夠9 花臉 上砂不勻;預(yù)干燥不夠,卷繞或復(fù)膠時(shí)脫砂嚴(yán)重在實(shí)際生產(chǎn)中,砂紙生產(chǎn)廠家都是通過具有一定工作經(jīng)驗(yàn)的工人眼睛目測(cè)和鋼尺測(cè)量的方法對(duì)砂紙質(zhì)量進(jìn)行檢測(cè)的。在科技飛速發(fā)展的背景下,對(duì)效率、速度要求越來(lái)越高。這種落后的方法已不再適用。而且這這種方法受工人主觀性影響,不同的工人可能檢測(cè)出來(lái)不同的結(jié)果。無(wú)損檢測(cè)替代人工檢測(cè)成為必然的發(fā)展趨勢(shì)。無(wú)損檢測(cè)是未來(lái)檢測(cè)技術(shù)的發(fā)展方向,使用智能的計(jì)算機(jī)視覺技術(shù)對(duì)砂紙表面缺陷進(jìn)行檢測(cè)具有高效性,快速性,準(zhǔn)確性,經(jīng)濟(jì)型等優(yōu)點(diǎn)。1.3 基于機(jī)器視覺的無(wú)損檢測(cè)技術(shù)概述1.3.1 機(jī)器視覺機(jī)器視覺利用計(jì)算機(jī)的計(jì)算能力、處理能力來(lái)模擬的視覺功能、判斷能力,從而完成對(duì)物體的識(shí)別、判斷 [1]。發(fā)展至今,機(jī)器視覺已有 20 多年的發(fā)展歷史。在此期間新的理論和技術(shù)不斷的涌現(xiàn)。在理論方面有模式識(shí)別,神經(jīng)網(wǎng)絡(luò)等。在技術(shù)方面有 ARM,F(xiàn)PGA 等,理論和技術(shù)不斷的互相促進(jìn)發(fā)展,使機(jī)器視覺在實(shí)際生產(chǎn)中應(yīng)用越來(lái)越廣泛 [2]。目前,機(jī)器視覺檢測(cè)技術(shù)廣泛應(yīng)用于工業(yè)、軍事、國(guó)防、醫(yī)學(xué)等各個(gè)領(lǐng)域 [3]。在工業(yè)生產(chǎn)中,機(jī)器視覺主要應(yīng)用于物體的識(shí)別、尺寸的檢測(cè)和缺陷的檢測(cè)等方面 [4]。機(jī)器視覺系統(tǒng)的基本構(gòu)成如圖 1-1 所示,在一定光照條件下,將攝像器材采集到的關(guān)于被檢測(cè)的物體的圖像,傳輸給圖像處理系統(tǒng),再根據(jù)圖像中所包含的信息如像素、亮度等,通過圖像處理算法對(duì)這些信息進(jìn)行處理,得到目標(biāo)3的特征,如面積、長(zhǎng)度等,再根據(jù)預(yù)設(shè)的約束條件輸出想要得到結(jié)果,如尺寸、角度、個(gè)數(shù)等,實(shí)現(xiàn)自動(dòng)識(shí)別功能。圖 1-1 機(jī)器視覺的系統(tǒng)構(gòu)成1.3.2 無(wú)損檢測(cè)無(wú)損檢測(cè)(non-destructive testing NDT)也叫無(wú)損探傷(non-destructive examination NDE),顧名思義是指在不破壞被檢測(cè)物體的前提下,根據(jù)聲波、光線、磁場(chǎng)等對(duì)材料內(nèi)部的異?;蛉毕莶课坏姆磻?yīng),通過物理或化學(xué)方法,憑借現(xiàn)代化的技術(shù)和先進(jìn)的設(shè)備器材,對(duì)試件內(nèi)部或表面的紋理、結(jié)構(gòu)、性質(zhì)、數(shù)量、形狀、位置、尺寸進(jìn)行檢查和測(cè)試的方法 [5]。通過使用依靠激光、超聲、電磁等原理的現(xiàn)代化儀器,可以在不損壞物體的前提下,對(duì)材料、產(chǎn)品進(jìn)行缺陷檢測(cè),得到缺陷的特征信息。中國(guó)無(wú)損檢測(cè)學(xué)術(shù)組織是中國(guó)機(jī)械工程學(xué)會(huì)無(wú)損檢測(cè)學(xué)會(huì),TC56 是其標(biāo)準(zhǔn)化機(jī)構(gòu) [6]。目前無(wú)損檢測(cè)已被廣泛應(yīng)用于自動(dòng)化生產(chǎn),與傳統(tǒng)的檢測(cè)手段相比,無(wú)損檢測(cè)具有不可替代的優(yōu)點(diǎn) [7]。1.3.2.1 無(wú)損檢測(cè)國(guó)外研究現(xiàn)狀1985 年,日本的千葉廠和川崎廠首先將激光掃描技術(shù)應(yīng)用于實(shí)際生產(chǎn)中,其圖像采集設(shè)備的光學(xué)裝置選用了會(huì)聚透鏡和一個(gè)濾光面罩,增強(qiáng)了檢測(cè)缺陷的能力 [8]。1988 年 ,德國(guó) SICK 公司 [9]將五套表面缺陷檢測(cè)設(shè)備安裝在在冷軋廠檢測(cè)4線上, 利用激光原理對(duì)鋼板在自動(dòng)生產(chǎn)過程中進(jìn)行缺陷檢測(cè) [10]。自上世紀(jì) 90 年代至今,線陣 CCD 技術(shù)逐漸出現(xiàn)在世人眼前,與早期的激光逐點(diǎn)掃面相比,線陣 CCD 采集到的圖像效果更好 [11]。德國(guó) NANO systems 公司研發(fā)了 NANO 系統(tǒng),該系統(tǒng)就是采用的線陣 CCD 攝像頭,該系統(tǒng)可以在高帶寬,高速度下,檢測(cè)最小尺寸為 0.5mm 的帶鋼表面缺陷 [12]。1997 年,德國(guó) Parsytec 公司為韓國(guó)浦項(xiàng)制鐵公司研制了 HTS-2 冷軋帶鋼表面缺陷檢測(cè)系統(tǒng) [13],該系統(tǒng)首次將基于人工神經(jīng)網(wǎng)絡(luò)(ANN)的分類器設(shè)計(jì)技術(shù)應(yīng)用于鋼板檢測(cè)領(lǐng)域。英國(guó) European Electronic System 公司(EES)研發(fā)的熱軋帶鋼表面檢測(cè)系統(tǒng),相比于同類產(chǎn)品缺陷檢測(cè)能力更強(qiáng)、缺陷圖像質(zhì)量更高,系統(tǒng)對(duì)環(huán)境的適應(yīng)能力更好,更加可靠、實(shí)用,歐美主要鋼鐵制造企業(yè)已將其應(yīng)用在實(shí)際生產(chǎn)中 [14]。1.3.2.2 無(wú)損檢測(cè)國(guó)內(nèi)研究現(xiàn)狀我國(guó)無(wú)損檢測(cè)技術(shù)的研究工作目前尚處在起步階段,與西方發(fā)達(dá)國(guó)家相比,整體水平比較低,在實(shí)際生產(chǎn)中的應(yīng)用還很低端。90 年代初,華中理工大學(xué)羅志勇等將激光掃描方法應(yīng)用在測(cè)量冷軋鋼板寬度和檢測(cè)孔洞缺陷上,并為該系統(tǒng)研發(fā)了相應(yīng)的信號(hào)處理電路,此后又開展了基于線陣 CCD 和面陣 CCD 的檢測(cè)技術(shù)的研發(fā)工作 [15]。1995 年,他們又開發(fā)出了利用多臺(tái)面陣 CCD 相機(jī)成像,對(duì)冷軋帶鋼表面孔洞、重皮和邊裂等缺陷進(jìn)行檢測(cè)的實(shí)驗(yàn)系統(tǒng)。同年,哈爾濱工業(yè)大學(xué)機(jī)器人研究所開始研究對(duì)帶鋼表面的主要缺陷進(jìn)行靜態(tài)檢測(cè)和識(shí)別。2002 年,北京科技大學(xué)徐科等人開發(fā)了一種圖像采集系統(tǒng),該系統(tǒng)采集鋼板表面圖像使用了多個(gè)面陣 CCD 攝像機(jī)同時(shí)采集 [16]。 2004 年浙江大學(xué)雙元公司推出了 SYWIS3000 紙病檢測(cè)分選系統(tǒng) [17],這是最早出現(xiàn)的紙張缺陷視覺檢測(cè)系統(tǒng),是國(guó)內(nèi)第一個(gè)自行研發(fā)的紙病檢測(cè)系統(tǒng),然而該系統(tǒng)的應(yīng)用也僅限于實(shí)驗(yàn)室,未見其應(yīng)用于國(guó)內(nèi)的企業(yè)。1.4 課題研究?jī)?nèi)容本課題的主要目的是研究一種基于計(jì)算機(jī)視覺的砂紙質(zhì)量檢測(cè)方法,以圖像處理技術(shù)為手段,結(jié)合砂紙本身特性,對(duì)上述缺陷進(jìn)行自動(dòng)識(shí)別和檢測(cè),以代替現(xiàn)有的人工檢測(cè),適應(yīng)生產(chǎn)線完全自動(dòng)化的要求。完成本系統(tǒng)首先要選取5光源和攝像器材的選取,然后使用計(jì)算機(jī)對(duì)采集到的圖像進(jìn)行處理,最后輸出使用者需要的缺陷處信息。本課題的主要工作有以下四點(diǎn):(1) 調(diào)查研究工業(yè)生產(chǎn)行業(yè)中先進(jìn)的表面缺陷檢測(cè)技術(shù)進(jìn)。(2) 完成試驗(yàn)設(shè)備的搭建。(3) 針對(duì)砂紙表面缺陷特征,設(shè)計(jì)驗(yàn)證適合砂紙的相關(guān)圖像處理算法。 (4) 使用該算法,檢測(cè)砂紙表面缺陷,驗(yàn)證該算法的有效性。62 砂紙?jiān)诰€檢測(cè)系統(tǒng)總體方案設(shè)計(jì)2.1 圖像采集設(shè)備圖像采集設(shè)備在在整個(gè)系統(tǒng)中的作用相當(dāng)于人的眼睛,用來(lái)獲取外部信息。為達(dá)到系統(tǒng)的要求,選用攝像器材時(shí)需要滿足考慮以下幾個(gè)問題:(1)攝像器材的分辨率:在工業(yè)成產(chǎn)中,選擇攝像頭的分辨率需要考慮被檢測(cè)物體的幅面和檢測(cè)精度。(2)攝像器材的采集速度:用幀率(Frames per Second FPS)即每秒顯示幀數(shù)表示攝像器材的圖像采集速度。檢測(cè)對(duì)象的運(yùn)動(dòng)速度決定了攝像器材的幀率選擇。本課題中砂紙生產(chǎn)過程中的卷軸轉(zhuǎn)動(dòng)速度不是很快,可以選用低幀率的攝像器材,可以降低成本。(3)工作距離:相機(jī)鏡頭與被觀察物體之間的距離。本課題需要拍攝到比較清晰的圖像,但并不是說(shuō)離砂紙的距離越近越清晰。本文使用微距模式進(jìn)行拍攝,但是不能距離砂紙表面過近,因?yàn)榭赡軙?huì)出現(xiàn)將砂紙表面的砂粒拍攝的過于清晰的情況,導(dǎo)致后期圖像處理出現(xiàn)問題,誤判為缺陷。綜上考慮,根據(jù)工業(yè)生產(chǎn)中常用的 CMOS 芯片的攝像機(jī)使用情況,本課題選用 MV-VDM120SM/SC 相機(jī)。該相機(jī)性能參數(shù)為:最高分辨率:,像素尺寸: ,光學(xué)尺寸 ,幀率 ,信噪比960128?m?75.3.?“3/1fps0,可通過外部信號(hào)觸發(fā)采集或連續(xù)采集,使用 USB3.0 接口輸出。本課dB5?題中攝像頭與砂紙間距離為 ,可以穩(wěn)定采集砂紙圖片。102.2 光源系統(tǒng)光源作為系統(tǒng)中的關(guān)鍵部分,光源選擇的不好會(huì)直接對(duì)處理結(jié)果造成影響。7光源應(yīng)以最合適的方式將光線投射到被檢測(cè)的物體表面,使被檢測(cè)物體的特征更加突出。照明系統(tǒng)設(shè)計(jì)的越好,圖像采集的效果就越好,后期的處理就越簡(jiǎn)單算法的設(shè)計(jì)也將更為簡(jiǎn)單。光源及照明方式比較實(shí)際生產(chǎn)中,主要使用掃描法、透射法、光照漫反射法作為缺陷檢測(cè)系統(tǒng)的照明方式。這三種照明方式各有優(yōu)缺點(diǎn),適合不同的情況。通過比較這幾種照明方式,選擇最適合砂紙缺陷檢測(cè)的照明方式。(1)掃描法:常用于傳統(tǒng)工業(yè)檢測(cè)中。本課題中檢測(cè)砂紙這樣大面積的表面缺陷,且分辨率在毫米級(jí),如果采用掃描法進(jìn)行檢測(cè)需要非常多的 CMOS 芯片。如果只使用一個(gè) CMOS 芯片,則需要用幾百分鐘的時(shí)間進(jìn)行檢測(cè),速度過慢,不滿足實(shí)時(shí)處理的要求。所以本課題不采用這種方法。(2)透射法:工業(yè)中使用這種方法常采用背景光源,背景光源放置在被測(cè)物體的下方。不透光部分在成像時(shí)呈現(xiàn)黑斑。這種方法通常用于檢測(cè)特征和背景之間有明顯的透光差異的物體。將這種方法應(yīng)用在砂紙的缺陷檢測(cè)中,使用效果并不理想,所以本實(shí)驗(yàn)沒有采用透射法。(3)漫反射法:因其設(shè)備簡(jiǎn)單,價(jià)格低廉被廣泛應(yīng)用于工業(yè)無(wú)損檢測(cè)中。在本課題中,因?yàn)樯凹埍砻娴募y理特性,缺陷區(qū)域反射率高,能與非缺陷區(qū)域?qū)Ρ葟?qiáng)烈,能突出缺陷特征。經(jīng)過分析對(duì)比,本文選用條形光源,這種光源適合對(duì)大面積表面進(jìn)行檢測(cè),并且?guī)缀踹m合所有缺陷的檢測(cè)。2.3 系統(tǒng)硬件架構(gòu)根據(jù)前文分析的硬件選擇,下面給出了本本課題所使用的硬件設(shè)備的結(jié)構(gòu)示意圖,如圖 2-1 所示。8圖 2-1 硬件系統(tǒng)結(jié)構(gòu)示意圖在圖 2-1 中,采用兩個(gè)條形光源,并對(duì)稱放置作為光源系統(tǒng)。這樣可以降低因光照不均對(duì)處理結(jié)果的影響。使用線陣 CCD 相機(jī)對(duì)圖像進(jìn)行采集,再將采集到的圖像傳輸?shù)接?jì)算機(jī)中,使用后文中所設(shè)計(jì)的算法對(duì)圖像進(jìn)行處理,最后輸出處理結(jié)果。硬件系統(tǒng)的基本工作原理為:攝像機(jī)采集圖片→數(shù)據(jù)傳入 PC機(jī)→圖像處理→輸出缺陷信息。硬件系統(tǒng)原理如圖 2-2 所示。9圖 2-2 硬件系統(tǒng)原理框圖103 砂紙缺陷檢測(cè)的圖像處理使用數(shù)字圖像處理技術(shù)首先需要進(jìn)行圖像獲取。在圖像采集過程中必不可少的會(huì)引入光照不勻,攝像設(shè)備等噪聲干擾。在向計(jì)算機(jī)傳輸圖像信息的過程中,也會(huì)受到外界因素干擾而產(chǎn)生噪聲。所以,在檢測(cè)缺陷前需進(jìn)行圖像預(yù)處理,降低噪聲對(duì)處理結(jié)果的干擾。3.1 圖像預(yù)處理通過攝像設(shè)備采集到的圖像并不是馬上進(jìn)行處理的,而是需要先對(duì)圖像進(jìn)行預(yù)處理,如灰度轉(zhuǎn)換,圖像幾何變換。3.1.1 RGB 顏色空間數(shù)字圖像的每一個(gè)網(wǎng)格上都填充了唯一的一種顏色,顏色空間就是計(jì)算機(jī)中顏色的表示方法。RGB(Red、Green、Blue)顏色空間是常用的一種顏色模型,稱其為與設(shè)備相關(guān)的色彩空間。其原理為:在陰極射線顯像管顯示系統(tǒng)中,彩色陰極射線管使用 R、G、B 的數(shù)值來(lái)驅(qū)動(dòng)電子發(fā)射電子,分別刺激熒光屏上用來(lái)顯示 R、 G、B 顏色的熒光粉發(fā)出不同亮度的光線。3.1.2 彩色圖像灰度轉(zhuǎn)換本課題中使用的是彩色相機(jī),采集到的圖像是彩色圖像,需要對(duì)彩色圖像進(jìn)行灰度轉(zhuǎn)換。因?yàn)槿绻苯邮褂貌噬珗D像進(jìn)行處理,有可能會(huì)出現(xiàn)處理速度慢,需要的算法復(fù)雜,占用儲(chǔ)存空間大等問題。因此,在圖像處理前需要將彩色圖像轉(zhuǎn)換成灰度圖像。灰度圖像所包含的信息足夠支撐分析意圖,灰度轉(zhuǎn)換可以提高圖像處理速度,并且可以降低算法的復(fù)雜性。3.2 圖像增強(qiáng)11增強(qiáng)處理的目的在于突出圖像中感興趣的部分,抑制不感興趣的成分。根據(jù)不同的情況,使用不同的圖像增強(qiáng),有時(shí)可能需要強(qiáng)調(diào)圖像整體特性,有時(shí)又可能需要強(qiáng)調(diào)圖像的局部特性??赡苄枰言静磺逦膱D像變清晰,也可能需要將原本清晰的圖像變模糊。在不同的場(chǎng)合下,圖像增強(qiáng)處理的手段和目的常常是完全不同的。3.2.1 中值濾波圖像的中值濾波是一種非線性的圖像處理方法,它把與它相鄰的區(qū)域內(nèi)的灰度按從小到大的順序排列,選擇中間的灰度值作為作為他自己的灰度。一般采用的是 個(gè)點(diǎn)的滑動(dòng)窗口。中值濾波窗口形狀有很多種,常用)12()(??n的有線性、方形、X 形等形狀。中值濾波的窗口大小通常在 3、5、7 等奇數(shù)中選擇,具體數(shù)值根據(jù)實(shí)際情況對(duì)不同大小的窗口處理結(jié)果進(jìn)行對(duì)比,選擇最佳大小。本課題中砂紙缺陷部分形狀特征的差別,檢測(cè)系統(tǒng)中使用的窗口為 n×n型。圖 3-1 中列舉了幾種常用的采樣窗口。由于中值濾波需要采樣窗口內(nèi)取灰度排序后位于中間的灰度作為結(jié)果,所以采樣窗口通覆蓋的像素個(gè)數(shù)通常為奇數(shù)。圖 3-1 中值濾波采樣窗口在中值濾波算法中,對(duì)孤立的像素的點(diǎn)關(guān)注并不高,但是認(rèn)為圖像中的每個(gè)像素與跟它相鄰的像素有著密切的關(guān)系,該算法會(huì)在每一個(gè)鄰域中選取選取一個(gè)最可能代表這個(gè)鄰域特征的像素灰度作為中心像素的灰度。這種方法能很好的消除孤立噪聲點(diǎn),對(duì)密集或稍大的噪聲點(diǎn)也可以很好的去除。尤其是在處12理椒鹽噪聲效果非常明顯。中值濾波對(duì)去除脈沖噪聲有良好效果,并且能夠同時(shí)去除噪聲和保護(hù)信號(hào)的邊緣不被模糊。中值濾波的這些優(yōu)點(diǎn)是線性濾波所不具有的。此外,中值濾波還具有算法簡(jiǎn)單,處理速度快,硬件易于實(shí)現(xiàn)等優(yōu)點(diǎn)。所以,中值濾波方法一經(jīng)提出后,便廣泛應(yīng)用在圖像處理中。3.2.2 高斯濾波高斯濾波是一種線性平滑濾波,利用鄰域平均的思想對(duì)圖像進(jìn)行平滑。在高斯濾波中,對(duì)圖像鄰域平均時(shí),對(duì)不同位置的像素賦予不同的權(quán)值。在圖 3-2中顯示的是 鄰域的高斯模版。3?圖 3-2 高斯模版如圖 3-2 所示,越靠近鄰域中心的位置,所賦予的權(quán)值越大。如此賦予權(quán)值的意義在于在對(duì)圖像平滑時(shí),能同時(shí)做到對(duì)圖像細(xì)節(jié)進(jìn)行模糊且保留圖像的總體灰度分布特征。高斯濾波的優(yōu)勢(shì)在于對(duì)圖像的總體特征的提取和增強(qiáng),但是對(duì)于高對(duì)比度的圖像平滑效率比較低,消除離散型噪聲效果不理想。3.2.3 均值濾波均值濾波是最典型的線性濾波。其基本原理為:利用卷積運(yùn)算對(duì)圖像的鄰域像素灰度進(jìn)行平均。使用這種方法能達(dá)到減少圖像噪聲影響,降低圖像對(duì)比度的目的。使用如圖 3-3 所示的卷積模版,選用 9 作為衰減因子,實(shí)現(xiàn)簡(jiǎn)單的均值濾波。13圖 3-3 簡(jiǎn)單卷積模版值得注意的是,鄰域內(nèi)的像素灰度值相同時(shí),卷積運(yùn)算結(jié)果與原來(lái)像素灰度值相同,可以使圖像均值濾波處理后不會(huì)產(chǎn)生新的噪聲影響。在均值濾波中,可以用增大鄰域邊長(zhǎng)的方法消除更多的噪聲,但是圖像的對(duì)比度也會(huì)降低很多。實(shí)用均值濾波方法消噪的代價(jià)是大幅降低圖像的對(duì)比度。使用以上提到的三種濾波,對(duì)不同的缺陷圖像進(jìn)行處理,得到如圖 3-4、圖3-5、圖 3-6、圖 3-7 所示的結(jié)果。圖 3-4 使用不同濾波對(duì)堆沙缺陷進(jìn)行處理14圖 3-5 使用不同濾波對(duì)刮痕缺陷進(jìn)行處理圖 3-6 使用不同濾波對(duì)折痕缺陷進(jìn)行處理15圖 3-7 使用不同濾波對(duì)褶皺缺陷進(jìn)行處理經(jīng)過對(duì)以上使用不同濾波進(jìn)行處理的圖片進(jìn)行對(duì)比,不難發(fā)現(xiàn)視同中值濾波的處理結(jié)果最好。能在減低圖像噪聲的同時(shí),保持圖像清晰。本文使用中值濾波進(jìn)行圖像的預(yù)處理。使用均值濾波需要考慮其窗口選擇的問題。下面對(duì)窗口選擇進(jìn)行分析比較。分別使用 、 、 的中值濾3?57?波窗口,對(duì)同一圖像進(jìn)行處理,得到如下結(jié)果,分別如圖 3-8、圖 3-9、圖 3-10所示:圖 3-8 3×3 中值濾波16圖 3-9 5×5 中值濾波圖 3-10 7×7 中值濾波通過對(duì)以上處理結(jié)果的對(duì)比,可以發(fā)現(xiàn)使用 3×3 大小的窗口進(jìn)行中值濾波,噪聲去除的效果最好,窗口增大后,缺陷部分輪廓變得模糊。因此本文采用窗口為 3×3 大小的中值濾波進(jìn)行消噪處理。3.3 圖像分割閾值分割是一種根據(jù)圖像直方圖使用閾值圖像像素分為若干類的圖像分割技術(shù)。這種圖像分割方法的優(yōu)點(diǎn)是實(shí)現(xiàn)簡(jiǎn)單,計(jì)算量小,性能穩(wěn)定。但在圖像灰度差異不明顯的圖像分割無(wú)法做到精確的分割。其基本算法為:設(shè)原灰度圖像為 ,設(shè)定一個(gè)閾值 T,則二值圖像為:),(yxf????10),g(yxTyxf??),(實(shí)際應(yīng)用中,常用的閾值分割方法有:雙峰法,迭代法,大津法(OTSU法)等。3.3.1 雙峰法雙峰法的原理非常簡(jiǎn)單:該方法認(rèn)為一副圖像由兩部分組成,分別為前景和背景,它們?cè)诨叶戎狈綀D上分別形成高峰,圖像閾值就在雙峰之間的最低谷處。這種方法簡(jiǎn)單的同時(shí),缺點(diǎn)也很明顯。那就是如果圖像復(fù)雜的話,不只兩個(gè)峰值,會(huì)導(dǎo)致閾值選取失敗。173.3.2 迭代閾值分割迭代法的基本思想是逼近,其原理是:首先猜測(cè)一個(gè)初始閾值 T,通常取灰度的平均值,在圖像處理中不斷改變這個(gè)閾值,從而得到最佳的閾值。之后計(jì)算分割后的兩個(gè)區(qū)域的平均閾值,低于 T 的區(qū)域平均閾值定為 Tb, 大于 T 的區(qū)域平均值定為 T0,則新的閾值為 。不斷重復(fù)以上步驟,當(dāng)重復(fù)到2/0)( b?第 k 次時(shí),有 ??????????NTjTjTitkkkkkk hjdi1111 ][2][0當(dāng) 時(shí),迭代算法停止。 為最終的閾值。1??kTk采用迭代二值化閾值分割的圖象處理效果比雙峰法要好。經(jīng)過不斷迭代運(yùn)算得出的閾值能較為準(zhǔn)確將圖像的前景和背景分割開,但是在圖像的細(xì)節(jié)處還無(wú)法做到準(zhǔn)確的分割。3.3.3 大津法(OTSU 法)1979 年,日本學(xué)者大津提出了 OTSU 算法,該算法的基本思想是聚類,基本內(nèi)容是把圖像的灰度數(shù)分成 2 個(gè)部分,使最大的灰度差異在兩個(gè)部分之間,最小的灰度差異在每個(gè)部分之間,通過方差的計(jì)算找到一個(gè)合適的灰度級(jí)來(lái)劃分?;驹頌椋涸O(shè) t 為前景與背景的分割閾值,前景點(diǎn)數(shù)占圖像比例為 ,0w平均灰度為 ;背景點(diǎn)數(shù)占圖像比例為 ,平均灰度為 。圖像的總平均灰度0u1w1u為 [18]: 10u???當(dāng)前景和背景之間的方差最大時(shí),得到的這個(gè) t 值就是我們想要求得的閾值。其中,方差的計(jì)算公式如下: 2120)()(uwug??????方差可以作為衡量灰度分布是否均勻的一種方法,方差越大,意味著前景和背18景之間的差異越大,而當(dāng)前景和背景都有一部分被錯(cuò)分為另一部分是兩部分之間的方差就會(huì)變小,而減少錯(cuò)分的概率,因此,如果類間方差達(dá)到最大,則此時(shí)的錯(cuò)分的概率為最低。綜合考慮,本文采用迭代二值化法閾值分割。下面是采用迭代二值化法閾值分割的原圖和效果圖。圖 3-11 處理劃痕缺陷效果圖處理結(jié)果表明,經(jīng)過迭代法多次運(yùn)算,能將缺陷特征準(zhǔn)確的分割出來(lái),缺陷特征輪廓清晰,使用迭代法處理砂紙缺陷結(jié)果令人比較滿意。但是由于系統(tǒng)圖像采集使用漫反射方法,光線照射不均勻,光線集中的地方比較亮,遠(yuǎn)離光照中心的區(qū)域,相對(duì)亮度較低一些,非缺陷部分亮度較高的區(qū)域經(jīng)過二值化處理,可能誤判為缺陷,形成噪聲。下文將對(duì)殘余的噪聲進(jìn)行處理。3.4 圖像的形態(tài)學(xué)處理開閉運(yùn)算常用于圖像的形態(tài)學(xué)處理。開閉運(yùn)算在實(shí)踐應(yīng)用中,因具有處理速度快,算法思路清晰等特點(diǎn),而被廣泛應(yīng)用于許多領(lǐng)域。開運(yùn)算和閉運(yùn)算都要用到腐蝕和膨脹。下面簡(jiǎn)單介紹下腐蝕和膨脹的原理與算法。腐蝕:消除邊界點(diǎn),使邊界向內(nèi)部收縮的過程。腐蝕操作常常用來(lái)去除無(wú)意義的小物體。腐蝕的基本算法:使用一個(gè)大小為 3x3 的結(jié)構(gòu)元素,對(duì)圖像的19每一個(gè)像素都掃描一遍,用結(jié)構(gòu)元素根其覆蓋的元素做“與”操作,如果結(jié)果都為 1,那么該點(diǎn)的圖像像素為 1,不然為 0。腐蝕的結(jié)果:使二值圖像縮小一圈。腐蝕的基本原理:在數(shù)字形態(tài)學(xué)中,設(shè) A 是在( x,y)平面上的一個(gè)目標(biāo)區(qū)域,S 為大小和形狀確定的結(jié)構(gòu)元素,定義 S 所表示的區(qū)域?yàn)?S(x,y),S(x,y)位于( x,y)平面上,這樣對(duì)于 A 的腐蝕結(jié)果為:?????yxyx/),(),(膨脹:把與物體相鄰的所有背景點(diǎn)都融合到此物體中,使邊界向外部擴(kuò)張的過程。膨脹操作常常用來(lái)填補(bǔ)物體中的空洞。膨脹的基本算法:使用一個(gè)大小為 3x3 的結(jié)構(gòu)元素,對(duì)圖像的每一個(gè)像素都掃描一遍,用結(jié)構(gòu)元素跟覆蓋的元素做“與”操作,如果結(jié)果都為 0,那么該點(diǎn)的圖像像素為 0,不然為 1。膨脹結(jié)果:使二值圖像增大一圈。膨脹的基本原理:在數(shù)字形態(tài)學(xué)中,設(shè) A 為(x,y)平面上的一個(gè)目標(biāo)區(qū)域,S 為大小和形狀確定的結(jié)構(gòu)元素,定義 S 所表示的區(qū)域?yàn)?S(x,y),S ( x,y)在(x,y)上,這樣對(duì)于 A 的膨脹結(jié)果為:??????yxSAyx),(),(|,在數(shù)字圖像形的態(tài)學(xué)處理中腐蝕和膨脹是最基本的兩個(gè)算子,通過對(duì)它們的組合及配合集合的運(yùn)算,可以構(gòu)造出形態(tài)學(xué)運(yùn)算簇。常用 A+S 表示 S 對(duì) A膨脹,用 A-S 表示 S 對(duì) A 腐蝕,定義 表示 S 對(duì) A 做開運(yùn)算、 表示 S??對(duì) A 做閉運(yùn)算,則有如下關(guān)系: ???)(?SAS?對(duì)于目標(biāo)圖像 A 的開運(yùn)算可以理解成先對(duì) A 腐蝕,再膨脹;而 A 的閉運(yùn)算可以理解成先對(duì) A 膨脹,再腐蝕。在圖像處理中,常用開閉運(yùn)算來(lái)對(duì)目標(biāo)圖像進(jìn)行過濾和填補(bǔ)。開運(yùn)算:圖像的開運(yùn)算可以理解為對(duì)目標(biāo)圖像先腐蝕,再膨脹。但膨脹恢復(fù)后的結(jié)果是有損的,就是說(shuō)開運(yùn)算后的圖像與原圖像并不相同。開運(yùn)算處理20后只有附近存在完整結(jié)構(gòu)元素的像素點(diǎn)會(huì)被留下,而其他附近沒有完整結(jié)構(gòu)元素的的像素點(diǎn)會(huì)被清除。在圖 3-12 中,a 代表目標(biāo)圖像, b 為經(jīng)過開運(yùn)算處理的圖像。圖像的開運(yùn)算常常用來(lái)消除孤立的小像素點(diǎn),在物體纖細(xì)點(diǎn)使其分離,在不改變面積的前提下對(duì)較大物體的邊界進(jìn)行平滑。使用開運(yùn)算對(duì)圖像進(jìn)行消噪處理時(shí),可以選擇性的保留目標(biāo)圖像中與結(jié)構(gòu)元素相同部分,而消除掉相與結(jié)構(gòu)元素不同的部分。圖 3-12 圖像開運(yùn)算的性質(zhì)閉運(yùn)算:圖像的閉運(yùn)算可以理解為對(duì)目標(biāo)圖像先膨脹,后腐蝕,但腐蝕恢復(fù)的結(jié)果同樣是不同于原圖像的。閉運(yùn)算的處理結(jié)果常常會(huì)在原圖像上增填一些新的像素。經(jīng)過閉運(yùn)算的處理,原圖像中距離相對(duì)較近的區(qū)域可能會(huì)被連接起來(lái),通常會(huì)放大孤立的元素點(diǎn),結(jié)構(gòu)元素的形狀和大小決定元素點(diǎn)放大的形狀和大小。在圖 3-13 中,a 為目標(biāo)圖像,b 為經(jīng)過閉運(yùn)算處理的圖像,圖中A、B 點(diǎn)在經(jīng)過閉運(yùn)算處理后被連接,因?yàn)?A、B 兩點(diǎn)所在的位置距離較為接近,C 點(diǎn)所在位置距離 A、B 點(diǎn)所在位置距離較遠(yuǎn),所以不能被連接。常用閉運(yùn)算對(duì)目標(biāo)圖像中的縫隙和空洞進(jìn)行填補(bǔ),或?qū)Ψ珠_的切鄰近區(qū)域進(jìn)行連接,在不改變面積的前提下平滑其邊界。如果結(jié)構(gòu)元素選擇合適,圖像經(jīng)過閉運(yùn)算處理可以使圖像中填補(bǔ)的區(qū)域具有一定的幾何特征,適當(dāng)進(jìn)行閉運(yùn)算是可以同時(shí)使圖像變得更加清晰和連貫,且不讓圖像中的線條變粗。21圖 3-13 圖像閉運(yùn)算的性質(zhì)原始圖像經(jīng)過迭代二值化法閾值分割后進(jìn)行開閉運(yùn)算效果如下:劃痕缺陷經(jīng)過開閉運(yùn)算處理后的效果圖,如圖 3-14 所示:a 原始圖像 b 閾值分割結(jié)果c 開閉運(yùn)算結(jié)果22圖 3-14 開閉運(yùn)算處理劃痕缺陷結(jié)果在圖 3-14 中,經(jīng)過閾值分割處理后,殘余的噪聲,在經(jīng)過開閉運(yùn)算后明顯減少了。堆砂缺陷經(jīng)過開閉運(yùn)算處理后的效果圖,如圖 3-15 所示:a 原始圖像b 閾值分割結(jié)果23c 開閉運(yùn)算結(jié)果圖 3-15 開閉運(yùn)算處理堆砂缺陷結(jié)果在圖 3-15 中,經(jīng)過閾值分割處理后的圖像還有很多細(xì)小噪聲不規(guī)則的分布在圖像中,經(jīng)過開閉運(yùn)算處理后,噪聲基本消除,消噪效果良好。通過對(duì)以上處理結(jié)果分析,可以得出結(jié)論,經(jīng)過開閉運(yùn)算的處理,圖像消噪效果明顯,并且對(duì)圖像中孔洞也進(jìn)行了填補(bǔ),圖像變得更加清晰連貫,并且輪廓也變得更加平滑了,由此可見,開閉運(yùn)算的處理結(jié)果令人滿意。經(jīng)開閉運(yùn)算處理后,對(duì)圖像是否有缺陷進(jìn)行判斷。本課題采用比值法判斷砂紙是否存在缺陷。求出缺陷部分的像素?cái)?shù)量與圖像的總像素?cái)?shù)量的比值。使用這個(gè)比值與一個(gè)預(yù)先設(shè)定好的閾值做比較,大于這個(gè)閾值則為有缺陷,反之則為無(wú)缺陷。這個(gè)預(yù)先設(shè)定好的閾值通過多組有缺陷的圖片的白色像素的比例對(duì)比,如表 4-1 所示,然后選取一個(gè)合適的閾值范圍,本課題中閾值選取的范圍定為 0~0.004。由于處理過程中可能會(huì)有噪聲無(wú)法消除,所以這個(gè)閾值不能為 0。為防止漏檢和誤檢,這個(gè)閾值選取得不能太大也不能太小,本文暫選取 0.002 為閾值。在不同環(huán)境中,該閾值需要根據(jù)實(shí)際情況進(jìn)行對(duì)應(yīng)的調(diào)整。表 4-1 不同圖像白色像素比例圖像 無(wú)缺陷砂紙圖像 1無(wú)缺陷砂紙圖像 2堆沙圖像 1 堆沙圖像 2 劃痕圖像白色像素比例0 0 0.0046 0.0045 0.0057244 軟件部分仿真實(shí)驗(yàn)4.1 軟件概述本課題在已有的缺陷檢測(cè)理論基礎(chǔ)上,完成了硬件部分的設(shè)計(jì)。軟件部分設(shè)計(jì)使用美國(guó) MathWorks 公司研發(fā)的 MATLAB 軟件,完成了整個(gè)檢測(cè)系統(tǒng)軟件部分的開發(fā)??紤]到實(shí)際生產(chǎn)過程中,不同工人的操作方式不同,水平不同,在保證功能的前提下,盡可能使軟件理解起來(lái)簡(jiǎn)單易懂,操作上方便快捷,人機(jī)交互友好。 MATLAB 具有的優(yōu)點(diǎn):一、速率較高的編程,較于 C 語(yǔ)言等更簡(jiǎn)潔明了;二、方面快捷的實(shí)用,一種調(diào)試和編寫比 VB 還易于理解編寫的語(yǔ)言;三、彈性較大,庫(kù)函數(shù)包容性強(qiáng),一些復(fù)雜的數(shù)學(xué)公式可直接調(diào)用于窗口。MATLAB 軟件編譯環(huán)境對(duì)用戶非常友好,編寫語(yǔ)言簡(jiǎn)單易于掌握,視界窗口簡(jiǎn)潔不復(fù)雜,分析數(shù)據(jù)和處理圖像有較強(qiáng)的能力。由于 MATLAB 軟件的快捷化,它在各大領(lǐng)域得到很多實(shí)際運(yùn)用并有實(shí)際效益,尤其是在模塊集合工具箱方面的運(yùn)用更為廣泛。4.2 軟件系統(tǒng)總體框架軟件部分作為系統(tǒng)的核心部分,實(shí)現(xiàn)的主演功能為:圖像獲取、圖像處理、輸出結(jié)果。圖像獲?。鹤鳛閳D像信息的來(lái)源,圖像獲取在系統(tǒng)中的作用非常重要。采集到的圖像的好壞,直接影響圖像處理結(jié)果的好壞。論文在第二章已經(jīng)完成了硬件設(shè)備的確定,這里不再具體闡述。
壓縮包目錄 | 預(yù)覽區(qū) |
|
請(qǐng)點(diǎn)擊導(dǎo)航文件預(yù)覽
|
編號(hào):490206
類型:共享資源
大?。?span id="ievbyqtbdd" class="font-tahoma">6.35MB
格式:ZIP
上傳時(shí)間:2019-01-20
10
積分
積分
- 關(guān) 鍵 詞:
- 砂紙 生產(chǎn) 出產(chǎn) 缺陷 缺點(diǎn) 自動(dòng)檢測(cè) 系統(tǒng) 設(shè)計(jì)
- 資源描述:
-
砂紙生產(chǎn)中砂紙缺陷自動(dòng)檢測(cè)系統(tǒng)的設(shè)計(jì),砂紙,生產(chǎn),出產(chǎn),缺陷,缺點(diǎn),自動(dòng)檢測(cè),系統(tǒng),設(shè)計(jì)展開閱讀全文
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。
相關(guān)資源
更多正為您匹配相似的精品文檔
鏈接地址:http://www.820124.com/p-490206.html