2017-2018學(xué)年高中數(shù)學(xué) 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法優(yōu)化練習(xí) 新人教A版選修2-2.doc
《2017-2018學(xué)年高中數(shù)學(xué) 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法優(yōu)化練習(xí) 新人教A版選修2-2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018學(xué)年高中數(shù)學(xué) 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法優(yōu)化練習(xí) 新人教A版選修2-2.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.2.2 反證法 [課時(shí)作業(yè)] [A組 基礎(chǔ)鞏固] 1.命題“△ABC中,若∠A>∠B,則a>b”的結(jié)論的否定應(yīng)該是( ) A.a(chǎn)<b B.a(chǎn)≤b C.a(chǎn)=b D.a(chǎn)≥b 解析:“a>b”的否定應(yīng)為“a=b或a<b”,即a≤b.故應(yīng)選B. 答案:B 2.用反證法證明命題:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,則a,b,c,d中至少有一個(gè)負(fù)數(shù)”時(shí)的假設(shè)為( ) A.a(chǎn),b,c,d全都大于等于0 B.a(chǎn),b,c,d全為正數(shù) C.a(chǎn),b,c,d中至少有一個(gè)正數(shù) D.a(chǎn),b,c,d中至多有一個(gè)負(fù)數(shù) 解析:至少有一個(gè)負(fù)數(shù)的否定是一個(gè)負(fù)數(shù)也沒有,即a,b,c,d全都大于等于0. 答案:A 3.“自然數(shù)a,b,c中恰有一個(gè)偶數(shù)”的否定正確的為( ) A.a(chǎn),b,c都是奇數(shù) B.a(chǎn),b,c都是偶數(shù) C.a(chǎn),b,c中至少有兩個(gè)偶數(shù) D.a(chǎn),b,c中都是奇數(shù)或至少有兩個(gè)偶數(shù) 解析:自然數(shù)a,b,c的奇偶性共有四種情形:(1)3個(gè)都是奇數(shù);(2)2個(gè)奇數(shù),1個(gè)偶數(shù);(3)1個(gè)奇數(shù),2個(gè)偶數(shù);(4)3個(gè)都是偶數(shù).所以否定正確的是a,b,c中都是奇數(shù)或至少有兩個(gè)偶數(shù). 答案:D 4.給定一個(gè)命題“已知x1>0,x2≠1且xn+1=,證明對(duì)任意正整數(shù)n都有xn>xn+1”,當(dāng)此題用反證法否定結(jié)論時(shí)應(yīng)是( ) A.對(duì)任意正整數(shù)n有xn≤xn+1 B.存在正整數(shù)n使xn≤xn+1 C.存在正整數(shù)n使xn>xn+1 D.存在正整數(shù)n使xn≥xn-1且xn≥xn+1 解析:“對(duì)任意正整數(shù)n都有xn>xn+1”的否定為“存在正整數(shù)n使xn≤xn+1”. 答案:B 5.設(shè)a,b,c∈(-∞,0),則三數(shù)a+,c+,b+中( ) A.都不大于-2 B.都不小于-2 C.至少有一個(gè)不大于-2 D.至少有一個(gè)不小于-2 解析:++=++ ∵a,b,c∈(-∞,0),∴a+=-≤-2,b+=-≤-2, c+=-≤-2, ∴++≤-6, ∴三數(shù)a+、c+、b+中至少有一個(gè)不大于-2,故應(yīng)選C. 答案:C 6.命題“任意多面體的面至少有一個(gè)是三角形或四邊形或五邊形”的結(jié)論的否定是________________________________________________________________________. 解析:“至少有一個(gè)”的否定是“沒有一個(gè)”. 答案:沒有一個(gè)是三角形或四邊形或五邊形 7.△ABC中,若AB=AC,P是△ABC內(nèi)的一點(diǎn),∠APB>∠APC,求證∠BAP<∠CAP.用反證法證明時(shí)的假設(shè)為________. 解析:反證法對(duì)結(jié)論的否定是全面否定,∠BAP<∠CAP的對(duì)立面是∠BAP=∠CAP或∠BAP>∠CAP. 答案:∠BAP=∠CAP或∠BAP>∠CAP 8.用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過(guò)程歸納為以下三個(gè)步驟: ①∠A+∠B+∠C=90+90+∠C>180,這與三角形內(nèi)角和為180相矛盾,則∠A=∠B=90不成立; ②所以一個(gè)三角形中不能有兩個(gè)直角; ③假設(shè)∠A,∠B,∠C中有兩個(gè)角是直角,不妨設(shè)∠A=∠B=90. 正確順序的序號(hào)排列為________. 解析:由反證法證明的步驟知,先反證即③,再推出矛盾即①,最后作出判斷,肯定結(jié)論即②,即順序應(yīng)為③①②. 答案:③①② 9.已知a≥-1,求證以下三個(gè)方程: x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一個(gè)方程有實(shí)數(shù)解. 證明:假設(shè)三個(gè)方程都沒有實(shí)根,則三個(gè)方程中:它們的判別式都小于0,即: ? ?-<a<-1,這與已知 a≥-1矛盾,所以假設(shè)不成立,故三個(gè)方程中至少有一個(gè)方程有實(shí)數(shù)解. 10.求證:不論x,y取何非零實(shí)數(shù),等式+=總不成立. 證明:假設(shè)存在非零實(shí)數(shù)x,y使得等式+=成立. 于是有y(x+y)+x(x+y)=xy, 即x2+y2+xy=0, 即(x+)2+y2=0. 由y≠0,得y2>0. 又(x+)2≥0, 所以(x+)2+y2>0. 與x2+y2+xy=0矛盾,故原命題成立. [B組 能力提升] 1.有甲、乙、丙、丁四位歌手參加比賽,其中一位獲獎(jiǎng),有人走訪了這四位歌手,甲說(shuō):“是乙或丙獲獎(jiǎng).”乙說(shuō):“甲、丙都未獲獎(jiǎng).”丙說(shuō):“我獲獎(jiǎng)了.”丁說(shuō):“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是( ) A.甲 B.乙 C.丙 D.丁 解析:若甲獲獎(jiǎng),則甲、乙、丙、丁四位歌手說(shuō)的話都是假的,同理可推出乙、丙、丁獲獎(jiǎng)的情況,最后可知獲獎(jiǎng)的歌手是丙. 答案:C 2.若△ABC能被一條直線分成兩個(gè)與自身相似的三角形,那么這個(gè)三角形的形狀是( ) A.鈍角三角形 B.直角三角形 C.銳角三角形 D.不確定 解析:分△ABC的直線只能過(guò)一個(gè)頂點(diǎn)且與對(duì)邊相交,如直線AD(點(diǎn)D在BC上),則∠ADB+∠ADC=π,若∠ADB為鈍角,則∠ADC為銳角.而∠ADC>∠BAD,∠ADC>∠ABD,△ABD與△ACD不可能相似,與已知不符,只有當(dāng)∠ADB=∠ADC=∠BAC=時(shí),才符合題意. 答案:B 3.已知數(shù)列{an},{bn}的通項(xiàng)公式分別為an=an+2,bn=bn+1(a,b是常數(shù)),且a>b,那么兩個(gè)數(shù)列中序號(hào)與數(shù)值均相同的項(xiàng)有________個(gè). 解析:假設(shè)存在序號(hào)和數(shù)值均相等的項(xiàng),即存在n使得an=bn,由題意a>b,n∈N*,則恒有an>bn,從而an+2>bn+1恒成立,∴不存在n使an=bn. 答案:0 4.完成反證法證題的全過(guò)程.設(shè)a1,a2,…,a7是1,2,…,7的一個(gè)排列,求證:乘積p=(a1-1)(a2-2)…(a7-7)為偶數(shù). 證明:假設(shè)p為奇數(shù),則a1-1,a2-2,…,a7-7均為奇數(shù).因奇數(shù)個(gè)奇數(shù)之和為奇數(shù),故有奇數(shù)=________=________=0.但0≠奇數(shù),這一矛盾說(shuō)明p為偶數(shù). 解析:據(jù)題目要求及解題步驟, 因?yàn)閍1-1,a2-2,…,a7-7均為奇數(shù), 所以(a1-1)+(a2-2)+…+(a7-7)也為奇數(shù). 即(a1+a2+…+a7)-(1+2+…+7)為奇數(shù). 又因?yàn)閍1,a2,…,a7是1,2,…,7的一個(gè)排列, 所以a1+a2+…+a7=1+2+…+7,故上式為0. 所以奇數(shù)=(a1-1)+(a2-2)+…+(a7-7) =(a1+a2+…+a7)-(1+2+…+7)=0. 答案:(a1-1)+(a2-2)+…+(a7-7) (a1+a2+…+a7)-(1+2+…+7) 5.已知a,b,c都是小于1的正數(shù),求證:(1-a)b,(1-b)c,(1-c)a中至少有一個(gè)不大于. 證明:假設(shè)(1-a)b,(1-b)c,(1-c)a都大于, 即(1-a)b>,(1-b)c>,(1-c)a>. ∵a,b,c都是小于1的正數(shù), ∴>,>,>, ∴++>.(*) 又∵≤,≤,≤, ∴++≤++==(當(dāng)且僅當(dāng)1-a=b,1-b=c,1-c=a,即a=b=c=時(shí),等號(hào)成立),與(*)式矛盾. ∴假設(shè)不成立,原命題成立, 故(1-a)b,(1-b)c,(1-c)a中至少有一個(gè)不大于. 6.求證:拋物線上任取四個(gè)不同點(diǎn)所組成的四邊形不可能是平行四邊形. 證明:如圖,設(shè)拋物線方程為 y2=2px(p>0), 在拋物線上任取四個(gè)不同點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4), 則y=2pxi(i=1,2,3,4), 于是直線AB的斜率為kAB==, 同理:kBC=,kCD=,kDA=. 假設(shè)四邊形ABCD為平行四邊形, 則有kAB=kCD,kBC=kDA, 即有 ①-②得y1-y3=y(tǒng)3-y1, ∴y1=y(tǒng)3,同理y2=y(tǒng)4, 則x1===x3, 同理x2=x4, 由,. 顯然A,C重合,B,D重合.這與A,B,C,D為拋物線上任意四點(diǎn)矛盾,故假設(shè)不成立. ∴四邊形ABCD不可能是平行四邊形.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2017-2018學(xué)年高中數(shù)學(xué) 第二章 推理與證明 2.2 直接證明與間接證明 2.2.2 反證法優(yōu)化練習(xí) 新人教A版選修2-2 2017 2018 學(xué)年 高中數(shù)學(xué) 第二 推理 證明 直接 間接 反證法
鏈接地址:http://www.820124.com/p-6075814.html