(魯京遼)2018-2019學(xué)年高中數(shù)學(xué) 第1章 立體幾何初步滾動(dòng)訓(xùn)練二 新人教B版必修2.doc
《(魯京遼)2018-2019學(xué)年高中數(shù)學(xué) 第1章 立體幾何初步滾動(dòng)訓(xùn)練二 新人教B版必修2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(魯京遼)2018-2019學(xué)年高中數(shù)學(xué) 第1章 立體幾何初步滾動(dòng)訓(xùn)練二 新人教B版必修2.doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第1章 立體幾何初步 滾動(dòng)訓(xùn)練二(1.2.1~1.2.3) 一、選擇題 1.下列命題正確的是( ) A.兩兩相交的三條直線可確定一個(gè)平面 B.兩個(gè)平面與第三個(gè)平面所成的角都相等,則這兩個(gè)平面一定平行 C.過(guò)平面外一點(diǎn)的直線與這個(gè)平面只能相交或平行 D.和兩條異面直線都相交的兩條直線一定是異面直線 考點(diǎn) 異面直線的判定 題點(diǎn) 異面直線的判定 答案 C 解析 對(duì)于A,兩兩相交的三條直線可確定一個(gè)平面或三個(gè)平面,故A錯(cuò)誤;對(duì)于B,兩個(gè)平面與第三個(gè)平面所成的角都相等,則這兩個(gè)平面平行或相交,故B錯(cuò)誤;對(duì)于C,過(guò)平面外一點(diǎn)的直線一定在平面外,且直線與這個(gè)平面相交或平行,故C正確;對(duì)于D,和兩條異面直線都相交的兩條直線是異面直線或共面直線,故D錯(cuò)誤.故選C. 2.設(shè)X,Y,Z是空間不同的直線或平面,對(duì)下面四種情形,使“X⊥Z且Y⊥Z?X∥Y”為真命題的是( ) ①X,Y,Z是直線;②X,Y是直線,Z是平面;③Z是直線,X,Y是平面;④X,Y,Z是平面. A.①② B.①③ C.③④ D.②③ 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的判定 答案 D 解析 對(duì)于①X,Y,Z是直線,“X⊥Z且Y⊥Z?X∥Y”是假命題,如正方體共頂點(diǎn)的三條棱; 對(duì)于②X,Y是直線,Z是平面,“X⊥Z且Y⊥Z?X∥Y”是真命題,根據(jù)線面垂直的性質(zhì)定理可知正確; ③Z是直線,X,Y是平面,“X⊥Z且Y⊥Z?X∥Y”是真命題,根據(jù)垂直于同一直線的兩個(gè)平面平行,故正確; ④X,Y,Z是平面,“X⊥Z且Y⊥Z?X∥Y”是假命題,如正方體共頂點(diǎn)的三個(gè)面.故選D. 3.已知m,n表示兩條不同的直線,α,β表示兩個(gè)不同的平面,則下列說(shuō)法正確的是( ) A.若m?α,α⊥β,則m⊥β B.若m?α,n?α,m∥β,n∥β,則α∥β C.若α⊥β,m⊥β,則m∥α D.若m⊥α,m∥β,則α⊥β 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的判定 答案 D 解析 由m,n表示兩條不同的直線,α,β表示兩個(gè)不同的平面知,在A中,若m?α,α⊥β,則m與β相交、平行或m?β,故A錯(cuò)誤; 在B中,若m?α,n?α,m∥β,n∥β,則α與β相交或平行,故B錯(cuò);在C中,若α⊥β,m⊥β,則m∥α或m?α,故C錯(cuò)誤; 在D中,若m⊥α,m∥β,則由面面垂直的判定定理,得α⊥β,故D正確. 4.如圖所示,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點(diǎn),PA⊥平面ABC,則四面體P-ABC的四個(gè)面中,直角三角形的個(gè)數(shù)為( ) A.4 B.3 C.2 D.1 考點(diǎn) 直線與平面垂直的性質(zhì) 題點(diǎn) 根據(jù)線面垂直的性質(zhì)判定線線垂直 答案 A 解析 ∵AB是圓O的直徑, ∴∠ACB=90,即BC⊥AC, ∴△ABC是直角三角形. 又∵PA⊥平面ABC, ∴△PAC,△PAB是直角三角形. 又BC?平面ABC, ∴PA⊥BC,又PA∩AC=A,PA,AC?平面PAC, ∴BC⊥平面PAC, ∴BC⊥PC, ∴△PBC是直角三角形.從而△PAB,△PAC,△ABC,△PBC都是直角三角形,故選A. 5.如圖所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分別是A1B1,AB的中點(diǎn),給出下列結(jié)論:①C1M⊥平面A1ABB1;②A1B⊥NB1;③平面AMC1∥平面CNB1.其中正確結(jié)論的個(gè)數(shù)為( ) A.0 B.1 C.2 D.3 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的判定 答案 D 解析 由側(cè)棱AA1⊥平面A1B1C1,可得AA1⊥C1M.由A1C1=B1C1及M為A1B1的中點(diǎn)可得C1M⊥A1B1, ∵AA1∩A1B1=A1, ∴C1M⊥平面A1ABB1,∴①正確; 由C1M⊥平面A1ABB1可得C1M⊥A1B,又已知AC1⊥A1B,C1M∩AC1=C1, ∴A1B⊥平面AMC1,從而可得A1B⊥AM, 又易證得AM∥NB1, ∴A1B⊥NB1,∴②正確; 易證得AM∥NB1,MC1∥CN,從而根據(jù)面面平行的判定定理可證得平面AMC1∥平面CNB1,∴③正確,故選D. 6.三棱錐P-ABC的四個(gè)頂點(diǎn)均在半徑為2的球面上,且AB=BC=CA=2,平面PAB⊥平面ABC,則三棱錐P-ABC的體積的最大值為( ) A.4 B.3 C.4 D.3 考點(diǎn) 柱體、錐體、臺(tái)體的體積 題點(diǎn) 錐體的體積 答案 B 解析 根據(jù)題意半徑為2的球面上, 且AB=BC=CA=2, △ABC是截面為大圓上的三角形, 設(shè)圓心為O,AB的中點(diǎn)為N,ON==1, ∵平面PAB⊥平面ABC, ∴三棱錐P-ABC的體積最大時(shí), PN⊥AB,PN⊥平面ABC, PN==, ∴三棱錐P-ABC的體積的最大值為 (2)2=3, 故選B. 7.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為矩形,AB=2BC,E是CD上一點(diǎn),若AE⊥平面PBD,則的值為( ) A. B. C.3 D.4 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的計(jì)算與探索性問(wèn)題 答案 C 解析 ∵PD⊥底面ABCD,AE?底面ABCD, ∴PD⊥AE, 當(dāng)AE⊥BD時(shí),AE⊥平面PBD,此時(shí)△ABD∽△DAE, 則=, ∵AB=2BC, ∴DE=AB=DC, ∴=3. 故選C. 8.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M,N分別是BB1,A1B1的中點(diǎn),點(diǎn)P在正方體的表面上運(yùn)動(dòng),則總能使MP⊥BN的點(diǎn)P所形成圖形的周長(zhǎng)是( ) A.4 B.2+ C.3+ D.2+ 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的計(jì)算與探索性問(wèn)題 答案 D 解析 如圖,取CC1的中點(diǎn)G,連接DG,MG,則MG∥BC.設(shè)BN交AM于點(diǎn)E. ∵BC⊥平面ABB1A1,NB?平面ABB1A1, ∴NB⊥MG. ∵正方體的棱長(zhǎng)為1,M,N分別是BB1,A1B1的中點(diǎn), ∴在△BEM中,∠MBE=30,∠BME=60, ∴∠MEB=90,即BN⊥AM,又MG∩AM=M, ∴NB⊥平面ADGM, ∴使NB與MP垂直的點(diǎn)P所構(gòu)成的軌跡為矩形ADGM(不包括M點(diǎn)).∵正方體的棱長(zhǎng)為1, ∴矩形ADGM的周長(zhǎng)等于2+.故選D. 二、填空題 9.下列四個(gè)命題中,真命題的個(gè)數(shù)為_(kāi)_______. ①如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合; ②兩條直線可以確定一個(gè)平面; ③若點(diǎn)M∈α,M∈β,α∩β=l,則M∈l; ④空間中,相交于同一點(diǎn)的三條直線在同一平面內(nèi). 考點(diǎn) 平面的基本性質(zhì) 題點(diǎn) 確定平面問(wèn)題 答案 1 解析 只有③正確. 10.如圖,兩個(gè)正方形ABCD和ADEF所在平面互相垂直,設(shè)M,N分別是BD和AE的中點(diǎn),那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN,CE異面,其中正確結(jié)論的序號(hào)是________. 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的判定 答案 ①②③ 解析 ∵兩個(gè)正方形ABCD和ADEF所在平面互相垂直, 設(shè)M,N分別是BD和AE的中點(diǎn), 取AD的中點(diǎn)G,連接MG,NG,易得AD⊥平面MNG, 進(jìn)而得到AD⊥MN,故①正確; 連接AC,CE,根據(jù)三角形中位線定理, 可得MN∥CE,由線面平行的判定定理, 可得②MN∥平面CDE及③MN∥CE正確,④MN,CE異面錯(cuò)誤; 故答案為①②③. 11.我們將一個(gè)四面體四個(gè)面中直角三角形的個(gè)數(shù)定義為此四面體的直度,在四面體ABCD中,AD⊥平面ABC,AC⊥BC,則四面體ABCD的直度為_(kāi)_______. 考點(diǎn) 空間中的垂直問(wèn)題 題點(diǎn) 空間中的垂直問(wèn)題 答案 4 解析 ∵在四面體ABCD中,AD⊥平面ABC, ∴AD⊥AB,AD⊥AC,AD⊥BC, ∵AC⊥BC,AC∩AD=A, ∴BC⊥平面ACD,∴BC⊥CD, ∴四面體ABCD的四個(gè)面均為直角三角形, ∴四面體ABCD的直度為4. 三、解答題 12.如圖,已知△ABC是正三角形,EA,CD都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)是BE的中點(diǎn),求證: (1)FD∥平面ABC; (2)AF⊥平面EDB. 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行、垂直綜合問(wèn)題的證明 證明 (1)取AB的中點(diǎn)M,連接FM,MC. ∵F,M分別是BE,BA的中點(diǎn), ∴FM∥EA,F(xiàn)M=EA=a. ∵EA,CD都垂直于平面ABC, ∴CD∥EA, ∴CD∥FM. 又∵DC=a,∴FM=DC, ∴四邊形FMCD是平行四邊形, ∴FD∥MC. ∵FD?平面ABC,MC?平面ABC, ∴FD∥平面ABC. (2)∵M(jìn)是AB的中點(diǎn),△ABC是正三角形, ∴CM⊥AB. 又∵AE⊥平面ABC,CM?平面ABC,∴CM⊥AE, 又∵AB∩AE=A,AB,AE?平面EAB, ∴CM⊥平面EAB, 又AF?平面EAB, ∴CM⊥AF. 又∵CM∥FD, ∴FD⊥AF. ∵F是BE的中點(diǎn),EA=AB, ∴AF⊥BE. 又∵FD∩BE=F,F(xiàn)D,BE?平面EDB, ∴AF⊥平面EDB. 13.如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC. (1)求證:平面AEC⊥平面ABE; (2)已知點(diǎn)F在BE上,若DE∥平面ACF,DC=CE=BC=3,求三棱錐A-BCF的體積. 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的計(jì)算與探索性問(wèn)題 (1)證明 ∵ABCD為矩形, ∴AB⊥BC. ∵平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,AB?平面ABCD, ∴AB⊥平面BCE. ∵CE?平面BCE, ∴CE⊥AB. ∵CE⊥BE,AB?平面ABE,BE?平面ABE,AB∩BE=B, ∴CE⊥平面ABE. ∵CE?平面AEC, ∴平面AEC⊥平面ABE. (2)解 連接BD交AC于點(diǎn)O,連接OF. ∵DE∥平面ACF,DE?平面BDE,平面ACF∩平面BDE=OF, ∴DE∥OF. 又∵矩形ABCD中,O為BD中點(diǎn), ∴F為BE中點(diǎn),即BF=FE. 在Rt△BEC中, ∵BC=6,EC=3, ∴BE==3. ∴S△BFC=33=. 又AB=DC=3, ∴VA-BCF=3=. 四、探究與拓展 14.如圖,在正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點(diǎn),現(xiàn)在沿SE,SF,EF把這個(gè)正方形折成一個(gè)四面體,使G1,G2,G3重合,重合后的點(diǎn)記為G.給出下列關(guān)系: ①SG⊥平面EFG;②SE⊥平面EFG;③GF⊥SE;④EF⊥平面SEG.其中成立的有( ) A.①與② B.①與③ C.②與③ D.③與④ 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的判定 答案 B 解析 由SG⊥GE,SG⊥GF,得SG⊥平面EFG,同理GF⊥SEG;若SE⊥平面EFG,則SG∥SE,這與SG∩SE=S矛盾,排除A、C,同理排除D,故選B. 15.如圖①所示,在Rt△ABC中,∠C=90,D,E分別為AC,AB的中點(diǎn),點(diǎn)F為線段CD上的一點(diǎn),將△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如圖②所示. (1)求證:DE∥平面A1CB; (2)求證:A1F⊥BE; (3)線段A1B上是否存在點(diǎn)Q,使A1C⊥平面DEQ?說(shuō)明理由. 考點(diǎn) 線、面平行、垂直的綜合應(yīng)用 題點(diǎn) 平行與垂直的計(jì)算與探索性問(wèn)題 (1)證明 因?yàn)镈,E分別為AC,AB的中點(diǎn),所以DE∥BC. 又DE?平面A1CB,BC?平面A1CB,所以DE∥平面A1CB. (2)證明 由已知得DC⊥BC且DE∥BC, 所以DE⊥DC.又DE⊥A1D,A1D∩CD=D,A1D,CD?平面A1DC, 所以DE⊥平面A1DC, 而A1F?平面A1DC, 所以DE⊥A1F. 又因?yàn)锳1F⊥CD,CD∩DE=D,CD,DE?平面BCDE,所以A1F⊥平面BCDE,又BE?平面BCDE, 所以A1F⊥BE. (3)解 線段A1B上存在點(diǎn)Q,使A1C⊥平面DEQ. 理由如下: 如圖所示,分別取A1C,A1B的中點(diǎn)P,Q,連接DP,PQ,QE, 則PQ∥BC.又因?yàn)镈E∥BC,所以DE∥PQ,所以平面DEQ即為平面DEP. 由(2)知,DE⊥平面A1DC,所以DE⊥A1C. 又因?yàn)镻是等腰三角形DA1C底邊A1C的中點(diǎn), 所以A1C⊥DP,又DE∩DP=D,DE,DP?平面DEP,所以A1C⊥平面DEP,從而A1C⊥平面DEQ. 故線段A1B上存在點(diǎn)Q,且Q為A1B的中點(diǎn)時(shí),A1C⊥平面DEQ.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 魯京遼2018-2019學(xué)年高中數(shù)學(xué) 第1章 立體幾何初步滾動(dòng)訓(xùn)練二 新人教B版必修2 魯京遼 2018 2019 學(xué)年 高中數(shù)學(xué) 立體幾何 初步 滾動(dòng) 訓(xùn)練 新人 必修
鏈接地址:http://www.820124.com/p-6158729.html