2019-2020年蘇教版高中數(shù)學(xué)(必修4)2.2《向量的線性運算》word教案.doc
《2019-2020年蘇教版高中數(shù)學(xué)(必修4)2.2《向量的線性運算》word教案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年蘇教版高中數(shù)學(xué)(必修4)2.2《向量的線性運算》word教案.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年蘇教版高中數(shù)學(xué)(必修4)2.2《向量的線性運算》word教案 【三維目標(biāo)】: 一、知識與技能 1.通過實例,掌握向量減法的運算,并理解其幾何意義; 2.掌握向量減法與加法的逆運算關(guān)系,能準(zhǔn)確作出兩個向量的差向量,并且能掌握差向量的起點和終點的規(guī)律; 3.能熟練地掌握用三角形法則和平行四邊形法則作出兩向量的差向量,了解向量方程,并會用幾何法解向量方程; 4.對學(xué)生滲透化歸、類比和數(shù)形結(jié)合的思想,繼續(xù)培養(yǎng)學(xué)生識圖和作圖的能力,及運用圖形解題的能力。 二、過程與方法 向量減法運算可以轉(zhuǎn)化成向量的加法運算,通過知識發(fā)生發(fā)展過程教學(xué)使學(xué)生感受和領(lǐng)悟數(shù)學(xué)發(fā)展的過程及其思想;最后通過講解例題,指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力。 三、情感、態(tài)度與價值觀 1.通過闡述向量的減法運算可以轉(zhuǎn)化成向量的加法運算,使學(xué)生理解事物之間可以相互轉(zhuǎn)化的辯證思想。 2.通過本節(jié)內(nèi)容的學(xué)習(xí),使同學(xué)們對向量加法的三角形法則和平行四邊形法則有了一定的認(rèn)識,進一步讓學(xué)生理解和領(lǐng)悟數(shù)形結(jié)合的思想;同時以較熟悉的物理背景去理解向量的加法,這樣有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。 【教學(xué)重點與難點】: 重點:向量減法的概念和向量減法的作圖法. 難點:減法運算時方向的確定. 【學(xué)法與教學(xué)用具】: 1.學(xué)法: (1)自主性學(xué)習(xí)+探究式學(xué)習(xí)法: (2)反饋練習(xí)法:以練習(xí)來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2.學(xué)法指導(dǎo):減法運算是加法運算的逆運算,學(xué)生在理解相反向量的基礎(chǔ)上結(jié)合向量的加法運算掌握向量的減法運算;并利用三角形做出減向量。 3. 教學(xué)用具:多媒體、實物投影儀、尺規(guī). 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 1.向量的加法定義、法則和運算律 2.數(shù)的運算:減法是加法的逆運算 二、研探新知 向量的減法是向量加法的逆運算。 1.向量減法的定義 若+=,則向量叫做與的差,記為-,求兩個向量差的運算,叫做向量的減法.表示:-=+(-) 2.向量減法的法則 根據(jù)向量減法的定義和向量加法的三角形法則,我們可以得到向量-的作圖方法 【思考】 :已知,,怎樣求作-? B O A - (1)三角形法則:已知,,在平面內(nèi)任取一點,作,,則. 即-可以表示為從(減向量)的終點,指向(被減向量)的終點的向量.(強調(diào):,同起點時,-是連結(jié),的終點,并指向“被減向量”的向量.) O A B (2)平行四邊形法:在平面內(nèi)任取一點O,作,,則由向量加法的平行四邊形法則可得=+(-)=-. 【思考】 :從向量的終點指向向量的終點的向量是什么?( -) 【探究】 :如右圖,∥時,怎樣作出-呢? 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1 (教材例1)如圖2-2-7(1),已知向量,不共線,求作向量- 【思考】 :A B C D O 你能畫圖說明-=+(-)嗎? 例2 如圖,是平行四邊形的對角線的交點, 若,,,試證明:+-= 例3 用向量法證明:對角線互相平分的四邊形是平行四邊形 例4 試證:對任意向量,都有. 證明:(1)當(dāng),中有零向量時,顯然成立。(2)當(dāng),均不為零向量時: ①與共線,即。當(dāng),同向時,;當(dāng),反向時,. ②,不共線時,在中,,則有 .∴ 其中:當(dāng),同向時,, 當(dāng),同向時,. 【思考】:任意一個非零向量是否一定可以表示為兩個不共線的向量的和? 四、鞏固深化,反饋矯正 教材練習(xí):第1至6題 五、歸納整理,整體認(rèn)識 1.掌握向量減法概念并知道向量的減法的定義是建立在向量加法的基礎(chǔ)上的; 2.會作兩向量的差向量; 3.能夠結(jié)合圖形進行向量計算以及用兩個向量表示其它向量。 六、承上啟下,留下懸念 1.已知正方形的邊長等于1,,,,求作向量:(1) (2); 2.已知向量,的模分別是3,4,求的取值范圍。 3.預(yù)習(xí)向量的數(shù)乘 七、板書設(shè)計(略) 八、課后記:- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 向量的線性運算 2019 2020 年蘇教版 高中數(shù)學(xué) 必修 2.2 向量 線性 運算 word 教案
鏈接地址:http://www.820124.com/p-6176323.html