2019-2020年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練18 直線(xiàn)與圓錐曲線(xiàn).doc
《2019-2020年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練18 直線(xiàn)與圓錐曲線(xiàn).doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練18 直線(xiàn)與圓錐曲線(xiàn).doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練18 直線(xiàn)與圓錐曲線(xiàn) 【復(fù)習(xí)要點(diǎn)】 直線(xiàn)與圓錐曲線(xiàn)聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱(chēng)問(wèn)題、軌跡問(wèn)題等.突出考查了數(shù)形結(jié)合、分類(lèi)討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法,要求考生分析問(wèn)題和解決問(wèn)題的能力、計(jì)算能力較高,起到了拉開(kāi)考生“檔次”,有利于選拔的功能. 1.直線(xiàn)與圓錐曲線(xiàn)有無(wú)公共點(diǎn)或有幾個(gè)公共點(diǎn)的問(wèn)題,實(shí)際上是研究它們的方程組成的方程是否有實(shí)數(shù)解成實(shí)數(shù)解的個(gè)數(shù)問(wèn)題,此時(shí)要注意用好分類(lèi)討論和數(shù)形結(jié)合的思想方法. 2.當(dāng)直線(xiàn)與圓錐曲線(xiàn)相交時(shí):涉及弦長(zhǎng)問(wèn)題,常用“韋達(dá)定理法”設(shè)而不求計(jì)算弦長(zhǎng)(即應(yīng)用弦長(zhǎng)公式);涉及弦長(zhǎng)的中點(diǎn)問(wèn)題,常用“差分法”設(shè)而不求,將弦所在直線(xiàn)的斜率、弦的中點(diǎn)坐標(biāo)聯(lián)系起來(lái),相互轉(zhuǎn)化.同時(shí)還應(yīng)充分挖掘題目的隱含條件,尋找量與量間的關(guān)系靈活轉(zhuǎn)化,往往就能事半功倍. 【例題】 【例1】 已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線(xiàn)y=x+1與橢圓交于P和Q,且OP⊥OQ,|PQ|=,求橢圓方程. 解:設(shè)橢圓方程為mx2+ny2=1(m>0,n>0),P(x1,y1),Q(x2,y2) 由 得(m+n)x2+2nx+n-1=0, Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0, 由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0, ∴+1=0,∴m+n=2 ① 又22, 將m+n=2,代入得mn= ② 由①、②式得m=,n=或m=,n= 故橢圓方程為+y2=1或x2+y2=1. 【例2】 如圖所示,拋物線(xiàn)y2=4x的頂點(diǎn)為O,點(diǎn)A的坐標(biāo)為(5,0),傾斜角為的直線(xiàn)l與線(xiàn)段OA相交(不經(jīng)過(guò)點(diǎn)O或點(diǎn)A)且交拋物線(xiàn)于M、N兩點(diǎn),求△AMN面積最大時(shí)直線(xiàn)l的方程,并求△AMN的最大面積. 解:由題意,可設(shè)l的方程為y=x+m,-5<m<0. 由方程組,消去y,得x2+(2m-4)x+m2=0……………① ∵直線(xiàn)l與拋物線(xiàn)有兩個(gè)不同交點(diǎn)M、N, ∴方程①的判別式Δ=(2m-4)2-4m2=16(1-m)>0, 解得m<1,又-5<m<0,∴m的范圍為(-5,0) 設(shè)M(x1,y1),N(x2,y2)則x1+x2=4-2m,x1x2=m2, ∴|MN|=4. 點(diǎn)A到直線(xiàn)l的距離為d=. ∴S△=2(5+m),從而S△2=4(1-m)(5+m)2 =2(2-2m)(5+m)(5+m)≤2()3=128. ∴S△≤8,當(dāng)且僅當(dāng)2-2m=5+m,即m=-1時(shí)取等號(hào). 故直線(xiàn)l的方程為y=x-1,△AMN的最大面積為8. 【例3】 已知雙曲線(xiàn)C:2x2-y2=2與點(diǎn)P(1,2)。(1)求過(guò)P(1,2)點(diǎn)的直線(xiàn)l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒(méi)有交點(diǎn)。(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在. 解:(1)當(dāng)直線(xiàn)l的斜率不存在時(shí),l的方程為x=1, 與曲線(xiàn)C有一個(gè)交點(diǎn). 當(dāng)l的斜率存在時(shí),設(shè)直線(xiàn)l的方程為y-2=k(x-1), 代入C的方程,并整理得 (2-k2)x2+2(k2-2k)x-k2+4k-6=0………………(*) (ⅰ)當(dāng)2-k2=0,即k=時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn) (ⅱ)當(dāng)2-k2≠0,即k≠時(shí) Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k) ①當(dāng)Δ=0,即3-2k=0,k=時(shí),方程(*)有一個(gè)實(shí)根,l與C有一個(gè)交點(diǎn). ②當(dāng)Δ>0,即k<,又k≠,故當(dāng)k<-或-<k<或<k<時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn). ③當(dāng)Δ<0,即k>時(shí),方程(*)無(wú)解,l與C無(wú)交點(diǎn). 綜上知:當(dāng)k=,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn); 當(dāng)<k<,或-<k<,或k<-時(shí),l與C有兩個(gè)交點(diǎn); 當(dāng)k>時(shí),l與C沒(méi)有交點(diǎn). (2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12-y12=2,2x22-y22=2兩式相減得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB==2 但漸近線(xiàn)斜率為,結(jié)合圖形知直線(xiàn)AB與C無(wú)交點(diǎn),所以假設(shè)不正確,即以Q為中點(diǎn)的弦不存在. 【例4】 如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線(xiàn)與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿(mǎn)足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列. (1)求該弦橢圓的方程; (2)求弦AC中點(diǎn)的橫坐標(biāo); (3)設(shè)弦AC的垂直平分線(xiàn)的方程為y=kx+m, 求m的取值范圍. 解:(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3. 故橢圓方程為=1. (2)由點(diǎn)B(4,yB)在橢圓上,得|F2B|=|yB|=.因?yàn)闄E圓右準(zhǔn)線(xiàn)方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(-x1),|F2C|=(-x2), 由|F2A|、|F2B|、|F2C|成等差數(shù)列,得 (-x1)+(-x2)=2,由此得出:x1+x2=8. 設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0==4. (3)解法一:由A(x1,y1),C(x2,y2)在橢圓上. ① ② 得 ①-②得9(x12-x22)+25(y12-y22)=0, 即9=0(x1≠x2) 將 (k≠0)代入上式,得94+25y0(-)=0 (k≠0) 即k=y0(當(dāng)k=0時(shí)也成立). 由點(diǎn)P(4,y0)在弦AC的垂直平分線(xiàn)上,得y0=4k+m, 所以m=y0-4k=y0-y0=-y0. 由點(diǎn)P(4,y0)在線(xiàn)段BB′(B′與B關(guān)于x軸對(duì)稱(chēng))的內(nèi)部, 得-<y0<,所以-<m<. 解法二:因?yàn)橄褹C的中點(diǎn)為P(4,y0),所以直線(xiàn)AC的方程為 y-y0=-(x-4)(k≠0) ③ 將③代入橢圓方程=1,得 (9k2+25)x2-50(ky0+4)x+25(ky0+4)2-259k2=0 所以x1+x2==8,解得k=y0.(當(dāng)k=0時(shí)也成立) (以下同解法一). 【例5】 已知雙曲線(xiàn)G的中心在原點(diǎn),它的漸近線(xiàn)與圓相切.過(guò)點(diǎn)作斜率為的直線(xiàn),使得和交于兩點(diǎn),和軸交于點(diǎn),并且點(diǎn)在線(xiàn)段上,又滿(mǎn)足. (1)求雙曲線(xiàn)的漸近線(xiàn)的方程; (2)求雙曲線(xiàn)的方程; (3)橢圓的中心在原點(diǎn),它的短軸是的實(shí)軸.如果中垂直于的平行弦的中點(diǎn)的軌跡恰好是的漸近線(xiàn)截在內(nèi)的部分,求橢圓的方程. 解:(1)設(shè)雙曲線(xiàn)的漸近線(xiàn)的方程為:, 則由漸近線(xiàn)與圓相切可得:. 所以,. 雙曲線(xiàn)的漸近線(xiàn)的方程為:. (2)由(1)可設(shè)雙曲線(xiàn)的方程為:. 把直線(xiàn)的方程代入雙曲線(xiàn)方程,整理得. 則 (*) ∵ ,共線(xiàn)且在線(xiàn)段上, ∴ , 即:,整理得: 將(*)代入上式可解得:. 所以,雙曲線(xiàn)的方程為. (3)由題可設(shè)橢圓的方程為:.下面我們來(lái)求出中垂直于的平行弦中點(diǎn)的軌跡. 設(shè)弦的兩個(gè)端點(diǎn)分別為,的中點(diǎn)為,則 . 兩式作差得: 由于, 所以,, 所以,垂直于的平行弦中點(diǎn)的軌跡為直線(xiàn)截在橢圓S內(nèi)的部分. 又由題,這個(gè)軌跡恰好是的漸近線(xiàn)截在內(nèi)的部分,所以,.所以,,橢圓S的方程為:. 點(diǎn)評(píng):解決直線(xiàn)與圓錐曲線(xiàn)的問(wèn)題時(shí),把直線(xiàn)投影到坐標(biāo)軸上(也即化線(xiàn)段的關(guān)系為橫坐標(biāo)(或縱坐標(biāo))之間的關(guān)系)是常用的簡(jiǎn)化問(wèn)題的手段;有關(guān)弦中點(diǎn)的問(wèn)題,常常用到“設(shè)而不求”的方法;判別式和韋達(dá)定理是解決直線(xiàn)與圓錐曲線(xiàn)問(wèn)題的常用工具). 【例6】 設(shè)拋物線(xiàn)過(guò)定點(diǎn),且以直線(xiàn)為準(zhǔn)線(xiàn). (1)求拋物線(xiàn)頂點(diǎn)的軌跡的方程; (2)若直線(xiàn)與軌跡交于不同的兩點(diǎn),且線(xiàn)段恰被直線(xiàn)平分,設(shè)弦MN的垂直平分線(xiàn)的方程為,試求的取值范圍. 解:(1)設(shè)拋物線(xiàn)的頂點(diǎn)為,則其焦點(diǎn)為.由拋物線(xiàn)的定義可知:. 所以,. 所以,拋物線(xiàn)頂點(diǎn)的軌跡的方程為: . (2)因?yàn)槭窍襇N的垂直平分線(xiàn)與y軸交點(diǎn)的縱坐標(biāo),由MN所唯一確定.所以,要求的取值范圍,還應(yīng)該從直線(xiàn)與軌跡相交入手. 顯然,直線(xiàn)與坐標(biāo)軸不可能平行,所以,設(shè)直線(xiàn)的方程為,代入橢圓方程得: 由于與軌跡交于不同的兩點(diǎn),所以,,即:.(*) 又線(xiàn)段恰被直線(xiàn)平分,所以,. 所以,. 代入(*)可解得:. 下面,只需找到與的關(guān)系,即可求出的取值范圍.由于為弦MN的垂直平分線(xiàn),故可考慮弦MN的中點(diǎn). 在中,令,可解得:. 將點(diǎn)代入,可得:. 所以,. 從以上解題過(guò)程來(lái)看,求的取值范圍,主要有兩個(gè)關(guān)鍵步驟:一是尋求與其它參數(shù)之間的關(guān)系,二是構(gòu)造一個(gè)有關(guān)參量的不等式.從這兩點(diǎn)出發(fā),我們可以得到下面的另一種解法: 解法二.設(shè)弦MN的中點(diǎn)為,則由點(diǎn)為橢圓上的點(diǎn),可知: . 兩式相減得: B B' M N P 又由于,代入上式得:. 又點(diǎn)在弦MN的垂直平分線(xiàn)上,所以,. 所以,. 由點(diǎn)在線(xiàn)段BB’上(B’、B為直線(xiàn)與橢圓的交點(diǎn),如圖),所以,. 也即:. 所以, 點(diǎn)評(píng):解決直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系問(wèn)題時(shí),對(duì)于消元后的一元二次方程,必須討論二次項(xiàng)系數(shù)和判別式,有時(shí)借助圖形的幾何性質(zhì)更為方便. 涉及弦中點(diǎn)問(wèn)題,利用韋達(dá)定理或運(yùn)用平方差法時(shí)(設(shè)而不求),必須以直線(xiàn)與圓錐曲線(xiàn)相交為前提,否則不宜用此法. 從構(gòu)造不等式的角度來(lái)說(shuō),“將直線(xiàn)的方程與橢圓方程聯(lián)立所得判別式大于0”與“弦MN的中點(diǎn)在橢圓內(nèi)”是等價(jià)的. 【例7】 設(shè)拋物線(xiàn)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn).又M是其準(zhǔn)線(xiàn)上一點(diǎn).試證:直線(xiàn)MA、MF、MB的斜率成等差數(shù)列. 證明 依題意直線(xiàn)MA、MB、MF的斜率顯然存在,并分別設(shè)為,, 點(diǎn)A、B、M的坐標(biāo)分別為A(,),B(,),M(,m) 由“AB過(guò)點(diǎn)F(,0)”得 ?。? 將上式代入拋物線(xiàn)中得: 可知 又依“及”可知 因此 而 故 即直線(xiàn)MA、MF、MB的斜率成等差數(shù)列. 【例8】 已知=(x,0),=(1,y) (1)求點(diǎn)P(x,y)的軌跡C的方程; (2)若直線(xiàn):y=kx+m(km≠0)與曲線(xiàn)C交于A、B兩端,D(0,-1),且有|AD|=|BD|,試求m的取值范圍。 解:(1) ∵ ∴=0 ∴ 得 ∴P點(diǎn)的軌跡方程為 (2)考慮方程組 消去y,得(1-3k2)x2-6kmx-3m2-3=0(*) 顯然1-3k2≠0 △=(6km)2-4(-3m2-3)=12(m2+1)-3k2>0 設(shè)x1,x2為方程*的兩根,則 故AB中點(diǎn)M的坐標(biāo)為(,) ∴線(xiàn)段AB的垂直平分線(xiàn)方程為: 將D(0,-1)坐標(biāo)代入,化簡(jiǎn)得:4m=3k2-1 故m、k滿(mǎn)足,消去k2得:m2-4m>0 解得:m<0或m>4 又∵4m=3k2-1>-1 ∴m>- 故m. 【直線(xiàn)與圓錐曲線(xiàn)練習(xí)】 一、選擇題 1.斜率為1的直線(xiàn)l與橢圓+y2=1相交于A、B兩點(diǎn),則|AB|的最大值為( ) A.2 B. C. D. 2.拋物線(xiàn)y=ax2與直線(xiàn)y=kx+b(k≠0)交于A、B兩點(diǎn),且此兩點(diǎn)的橫坐標(biāo)分別為x1,x2,直線(xiàn)與x軸交點(diǎn)的橫坐標(biāo)是x3,則恒有( ) A.x3=x1+x2 B.x1x2=x1x3+x2x3 C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0 二、填空題 3.已知兩點(diǎn)M(1,)、N(-4,-),給出下列曲線(xiàn)方程:①4x+2y-1=0, ②x2+y2=3,③+y2=1,④-y2=1,在曲線(xiàn)上存在點(diǎn)P滿(mǎn)足|MP|=|NP|的所有曲線(xiàn)方程是_________. 4.正方形ABCD的邊AB在直線(xiàn)y=x+4上,C、D兩點(diǎn)在拋物線(xiàn)y2=x上,則正方形ABCD的面積為_(kāi)________. 5.在拋物線(xiàn)y2=16x內(nèi),通過(guò)點(diǎn)(2,1)且在此點(diǎn)被平分的弦所在直線(xiàn)的方程是_________. 三、解答題 6.已知拋物線(xiàn)y2=2px(p>0),過(guò)動(dòng)點(diǎn)M(a,0)且斜率為1的直線(xiàn)l與該拋物線(xiàn)交于不同的兩點(diǎn)A、B,且|AB|≤2p. (1)求a的取值范圍. (2)若線(xiàn)段AB的垂直平分線(xiàn)交x軸于點(diǎn)N, 求△NAB面積的最大值. 7.已知中心在原點(diǎn),頂點(diǎn)A1、A2在x軸上,離心率e=的雙曲線(xiàn)過(guò)點(diǎn)P(6,6). (1)求雙曲線(xiàn)方程. (2)動(dòng)直線(xiàn)l經(jīng)過(guò)△A1PA2的重心G,與雙曲線(xiàn)交于不同的兩點(diǎn)M、N,問(wèn):是否存在直線(xiàn)l,使G平分線(xiàn)段MN,證明你的結(jié)論. 8.已知雙曲線(xiàn)C的兩條漸近線(xiàn)都過(guò)原點(diǎn),且都以點(diǎn)A(,0)為圓心,1為半徑的圓相切,雙曲線(xiàn)的一個(gè)頂點(diǎn)A1與A點(diǎn)關(guān)于直線(xiàn)y=x對(duì)稱(chēng). (1)求雙曲線(xiàn)C的方程. (2)設(shè)直線(xiàn)l過(guò)點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線(xiàn)C的上支上有且僅有一點(diǎn)B到直線(xiàn)l的距離為,試求k的值及此時(shí)B點(diǎn)的坐標(biāo). 直線(xiàn)與圓錐曲線(xiàn)參考答案 一、1.解析:弦長(zhǎng)|AB|=≤. 答案:C 2.解析:解方程組,得ax2-kx-b=0,可知x1+x2=,x1x2=-,x3=-,代入驗(yàn)證即可. 答案:B 二、3.解析:點(diǎn)P在線(xiàn)段MN的垂直平分線(xiàn)上,判斷MN的垂直平分線(xiàn)于所給曲線(xiàn)是否存在交點(diǎn). 答案:②③④ 4.解析:設(shè)C、D所在直線(xiàn)方程為y=x+b,代入y2=x,利用弦長(zhǎng)公式可求出|CD|的長(zhǎng),利用|CD|的長(zhǎng)等于兩平行直線(xiàn)y=x+4與y=x+b間的距離,求出b的值,再代入求出|CD|的長(zhǎng). 答案:18或50 5.解析:設(shè)所求直線(xiàn)與y2=16x相交于點(diǎn)A、B,且A(x1,y1),B(x2,y2),代入拋物線(xiàn)方程得y12=16x1,y22=16x2,兩式相減得,(y1+y2)(y1-y2)=16(x1-x2). 即kAB=8. 故所求直線(xiàn)方程為y=8x-15. 答案:8x-y-15=0 三、6.解:(1)設(shè)直線(xiàn)l的方程為:y=x-a,代入拋物線(xiàn)方程得(x-a)2=2px,即x2-2(a+p)x+a2=0 ∴|AB|=≤2p.∴4ap+2p2≤p2,即4ap≤-p2 又∵p>0,∴a≤-. (2)設(shè)A(x1,y1)、B(x2,y2),AB的中點(diǎn) C(x,y), 由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p, 則有x==p. ∴線(xiàn)段AB的垂直平分線(xiàn)的方程為y-p=-(x-a-p),從而N點(diǎn)坐標(biāo)為(a+2p,0) 點(diǎn)N到AB的距離為 從而S△NAB= 當(dāng)a有最大值-時(shí),S有最大值為p2. 7.解:(1)如圖,設(shè)雙曲線(xiàn)方程為=1.由已知得,解得a2=9,b2=12. 所以所求雙曲線(xiàn)方程為=1. (2)P、A1、A2的坐標(biāo)依次為(6,6)、(3,0)、(-3,0), ∴其重心G的坐標(biāo)為(2,2) 假設(shè)存在直線(xiàn)l,使G(2,2)平分線(xiàn)段MN,設(shè)M(x1,y1),N(x2,y2).則有 ,∴kl= ∴l(xiāng)的方程為y= (x-2)+2, 由,消去y,整理得x2-4x+28=0. ∵Δ=16-428<0,∴所求直線(xiàn)l不存在. 8.解:(1)設(shè)雙曲線(xiàn)的漸近線(xiàn)為y=kx,由d==1,解得k=1. 即漸近線(xiàn)為y=x,又點(diǎn)A關(guān)于y=x對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(0,). ∴a==b,所求雙曲線(xiàn)C的方程為x2-y2=2. (2)設(shè)直線(xiàn)l:y=k(x-)(0<k<1,依題意B點(diǎn)在平行的直線(xiàn)l′上,且l與l′間的距離為. 設(shè)直線(xiàn)l′:y=kx+m,應(yīng)有,化簡(jiǎn)得m2+2km=2. ② 把l′代入雙曲線(xiàn)方程得(k2-1)x2+2mkx+m2-2=0, 由Δ=4m2k2-4(k2-1)(m2-2)=0. 可得m2+2k2=2 ③ ②、③兩式相減得k=m,代入③得m2=,解設(shè)m=,k=,此時(shí)x=,y=.故B(2,).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué) 知識(shí)點(diǎn)精析精練18 直線(xiàn)與圓錐曲線(xiàn) 2019 2020 年高 數(shù)學(xué) 知識(shí)點(diǎn) 精練 18 直線(xiàn) 圓錐曲線(xiàn)
鏈接地址:http://www.820124.com/p-6221393.html