2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 單元檢測十 算法、統(tǒng)計(jì)與統(tǒng)計(jì)案例(提升卷)單元檢測 文(含解析) 新人教A版.docx
《2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 單元檢測十 算法、統(tǒng)計(jì)與統(tǒng)計(jì)案例(提升卷)單元檢測 文(含解析) 新人教A版.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 單元檢測十 算法、統(tǒng)計(jì)與統(tǒng)計(jì)案例(提升卷)單元檢測 文(含解析) 新人教A版.docx(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
單元檢測十 算法、統(tǒng)計(jì)與統(tǒng)計(jì)案例(提升卷) 考生注意: 1.本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共4頁. 2.答卷前,考生務(wù)必用藍(lán)、黑色字跡的鋼筆或圓珠筆將自己的姓名、班級(jí)、學(xué)號(hào)填寫在相應(yīng)位置上. 3.本次考試時(shí)間100分鐘,滿分130分. 4.請(qǐng)?jiān)诿芊饩€內(nèi)作答,保持試卷清潔完整. 第Ⅰ卷(選擇題 共60分) 一、選擇題(本題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的) 1.(2018上海十四校聯(lián)考)若x1,x2,x3,…,x10的平均數(shù)為3,則3(x1-2),3(x2-2),3(x3-2),…,3(x10-2)的平均數(shù)為( ) A.3B.9C.18D.27 答案 A 解析 由題意得x1+x2+x3+…+x10=30,所以3(x1-2)+3(x2-2)+3(x3-2)+…+3(x10-2)=3(x1+x2+x3+…+x10)-60=30,所以所求平均數(shù)==3,故選A. 2.(2018青島模擬)一個(gè)公司有8名員工,其中6位員工的月工資分別為5 200,5 300,5 500,6 100,6 500,6 600,另兩位員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是( ) A.5800B.6000C.6200D.6400 答案 D 解析 由題意知,當(dāng)另外兩位員工的工資都小于5200時(shí),中位數(shù)為(5300+5500)2=5400;當(dāng)另外兩位員工的工資都大于6600時(shí),中位數(shù)為(6100+6500)2=6300,所以8位員工月工資的中位數(shù)的取值區(qū)間為[5 400,6 300],所以這8位員工月工資的中位數(shù)不可能是6400,故選D. 3.若x1,x2,…,x2019的平均數(shù)為3,標(biāo)準(zhǔn)差為4,且yi=-3(xi-2),i=1,2,…,2019,則新數(shù)據(jù)y1,y2,…,y2019的平均數(shù)和標(biāo)準(zhǔn)差分別為( ) A.-9,12 B.-9,36 C.-3,36 D.-3,12 答案 D 解析 由平均數(shù)和標(biāo)準(zhǔn)差的性質(zhì)可知,若x1,x2,x3,…,xn的平均數(shù)為,標(biāo)準(zhǔn)差為s,則kx1+b,kx2+b,kx3+b,…,kxn+b的平均數(shù)為k+b,標(biāo)準(zhǔn)差為|k|s,據(jù)此結(jié)合題意可得y1,y2,…,y2019的平均數(shù)為-3(3-2)=-3,標(biāo)準(zhǔn)差為34=12,故選D. 4.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為1,則輸入x的值為( ) A.-2或-1或3 B.2或-2 C.3或-1 D.3或-2 答案 D 解析 由-2x-3=1 ,解得x=-2 ,因?yàn)椋?>2 不成立,所以-2是輸入的x的值;由log3(x2-2x)=1 ,即x2-2x=3,解得x=3或x=-1(舍去). 綜上,x的值為-2或3, 故選D. 5.(2018濟(jì)南模擬)中國詩詞大會(huì)的播出引發(fā)了全民的讀書熱,某小學(xué)語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如圖,若規(guī)定得分不小于85分的學(xué)生得到“詩詞達(dá)人”的稱號(hào),小于85分且不小于70分的學(xué)生得到“詩詞能手”的稱號(hào),其他學(xué)生得到“詩詞愛號(hào)者”的稱號(hào),根據(jù)該次比賽的成績按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為( ) A.2B.4C.5D.6 答案 B 解析 由莖葉圖得班里40名學(xué)生中,獲得“詩詞達(dá)人”稱號(hào)的有8人,獲得“詩詞能手”稱號(hào)的有16人,獲得“詩詞愛好者”稱號(hào)的有16人,則由分層抽樣的概念得選取的10名學(xué)生中,獲得“詩詞能手”稱號(hào)的人數(shù)為10=4,故選B. 6.某市某高中從高三年級(jí)甲、乙兩個(gè)班中各選出7名學(xué)生參加2018年全國高中數(shù)學(xué)聯(lián)賽,他們?nèi)〉玫某煽?滿分140分)的莖葉圖如圖所示,其中甲班學(xué)生成績的中位數(shù)是81,乙班學(xué)生成績的平均數(shù)是86.若正實(shí)數(shù)a,b滿足a,G,b成等差數(shù)列,且x,G,y成等比數(shù)列,則+的最小值為( ) A.B.2C.D.9 答案 C 解析 甲班學(xué)生成績的中位數(shù)是80+x=81,解得x=1.由莖葉圖可知乙班學(xué)生的總分為76+803+903+(0+2+y+1+3+6)=598+y,又乙班學(xué)生成績的平均數(shù)是86,所以867=598+y,解得y=4.若正實(shí)數(shù)a,b滿足a,G,b成等差數(shù)列,且x,G,y成等比數(shù)列,則2G=a+b,xy=G2,即有a+b=4,則+=(a+b)=≥=9=,當(dāng)且僅當(dāng)a=,b=時(shí),取等號(hào).故選C. 7.某校九年級(jí)有400名學(xué)生,隨機(jī)抽取了40名學(xué)生,測試1分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖,用樣本估計(jì)總體,下列結(jié)論正確的是( ) A.該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)的中位數(shù)為25 B.該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)的眾數(shù)為24 C.該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)超過30的人數(shù)約為80 D.該校九年級(jí)學(xué)生1分鐘仰臥起坐的次數(shù)少于20的人數(shù)約為8 答案 C 解析 第一組數(shù)據(jù)的頻率為0.025=0.1,第二組數(shù)據(jù)的頻率為0.065=0.3,第三組數(shù)據(jù)的頻率為0.085=0.4,所以中位數(shù)在第三組內(nèi),設(shè)中位數(shù)為25+x,則x0.08=0.5-0.1-0.3=0.1,所以x=1.25,所以中位數(shù)為26.25,故A錯(cuò)誤;最高矩形是第三組數(shù)據(jù),第三組數(shù)據(jù)的中間值為27.5,所以眾數(shù)為27.5,故B錯(cuò)誤;學(xué)生1分鐘仰臥起坐的成績超過30次的頻率為0.045=0.2,所以超過30次的人數(shù)為4000.2=80,故C正確;學(xué)生1分鐘仰臥起坐的成績少于20次的頻率為0.025=0.1,所以1分鐘仰臥起坐的成績少于20次的人數(shù)為4000.1=40,故D錯(cuò)誤.故選C. 8.某程序框圖如圖所示,若輸出S=3,則判斷框中M為( ) A.k<14?B.k≤14? C.k≤15? D.k>15? 答案 B 解析 由程序框圖可知S=++…+, 因?yàn)椋剑? 所以S=-+-+-+…+-=-1, 所以S=-1=3,解得k=15,即當(dāng)k=15時(shí)程序退出, 故選B. 9.某班一次測試成績的莖葉圖和頻率分布直方圖可見部分如圖,根據(jù)圖中的信息可確定被抽測的人數(shù)及分?jǐn)?shù)在[90,100]內(nèi)的人數(shù)分別為( ) A.20,2B.24,4C.25,2D.25,4 答案 C 解析 由頻率分布直方圖可得分?jǐn)?shù)在[50,60)內(nèi)的頻率是0.00810=0.08,又由莖葉圖可得分?jǐn)?shù)在[50,60)內(nèi)的頻數(shù)是2,則被抽測的人數(shù)為=25.又由頻率分布直方圖可得分?jǐn)?shù)在[90,100]內(nèi)的頻率與分?jǐn)?shù)在[50,60)內(nèi)的頻率相同,則頻數(shù)也相同,都是2,故選C. 10.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持與不支持)的關(guān)系,運(yùn)用22列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=6.705,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是認(rèn)為“學(xué)生性別與支持該活動(dòng)沒有關(guān)系”的把握是( ) P(K2≥k0) 0.100 0.050 0.025 0.010 0.001 k0 2.706 3.841 5.024 6.635 10.828 A.99.9%B.99%C.1%D.0.1% 答案 C 解析 因?yàn)?.635<6.705<10.828,所以有1%的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)沒有關(guān)系”,故選C. 11.設(shè)某中學(xué)的高中女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,3,…,n),用最小二乘法近似得到線性回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( ) A.y與x具有正線性相關(guān)關(guān)系 B.回歸直線過樣本點(diǎn)的中心(,) C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg 答案 D 解析 y與x具有正線性相關(guān)關(guān)系,A正確;由線性回歸方程的性質(zhì)可知,B正確;身高每增加1 cm,體重約增加0.85 kg,C正確;某女生身高為160 cm,則其身高約為50.29 kg,D錯(cuò)誤,故選D. 12.以下四個(gè)結(jié)論,正確的是( ) ①質(zhì)檢員從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,每間隔10分鐘抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣; ②在頻率分布直方圖中,所有小矩形的面積之和為1; ③在線性回歸方程=0.2x+12中,當(dāng)變量x每增加一個(gè)單位時(shí),變量y一定增加0.2個(gè)單位; ④對(duì)于兩個(gè)分類變量X與Y,求出其統(tǒng)計(jì)量K2的觀測值k,觀測值k越大,我們認(rèn)為“X與Y有關(guān)系”的把握程度就越大. A.①④B.②③C.①③D.②④ 答案 D 解析 對(duì)于①,易得這樣的抽樣為系統(tǒng)抽樣,①錯(cuò)誤;對(duì)于②,由頻率分布直方圖的概念易得②正確;對(duì)于③,由線性回歸方程的概念易得變量y約增加0.2個(gè)單位,③錯(cuò)誤;對(duì)于④,由獨(dú)立性檢驗(yàn)易得④正確.綜上所述,故選D. 第Ⅱ卷(非選擇題 共70分) 二、填空題(本題共4小題,每小題5分,共20分.把答案填在題中橫線上) 13.下表是一個(gè)容量為10的樣本數(shù)據(jù)分組后的頻數(shù)分布.若利用組中值近似計(jì)算本組數(shù)據(jù)平均數(shù),則的值為________. 數(shù)據(jù) [12.5,15.5) [15.5,18.5) [18.5,21.5) [21.5,24.5) 頻數(shù) 2 1 3 4 答案 19.7 解析 由題意得平均數(shù) ==19.7. 14.抽樣統(tǒng)計(jì)甲、乙兩名學(xué)生的5次訓(xùn)練成績(單位:分),結(jié)果如下: 學(xué)生 第1次 第2次 第3次 第4次 第5次 甲 65 80 70 85 75 乙 80 70 75 80 70 則成績較為穩(wěn)定(方差較小)的那位學(xué)生成績的方差為________. 答案 20 解析 由數(shù)據(jù)可得甲的平均數(shù)是(65+80+70+85+75)=75,方差為[(65-75)2+(80-75)2+(70-75)2+(85-75)2+(75-75)2]=50,乙的平均數(shù)是(80+70+75+80+70)=75,方差為[(80-75)2+(70-75)2+(75-75)2+(80-75)2+(70-75)2]=20<50,故成績較穩(wěn)定的學(xué)生為乙,其方差為20. 15.為了解某一段公路汽車通過時(shí)的車速情況,現(xiàn)隨機(jī)抽測了通過這段公路的200輛汽車的時(shí)速,所得數(shù)據(jù)均在[40,80]中,其頻率分布直方圖如圖所示,則在抽測的200輛汽車中,時(shí)速在[40,60)內(nèi)的汽車有________輛. 答案 80 解析 由頻率分布直方圖可得時(shí)速在[40,60)內(nèi)的頻率為(0.01+0.03)10=0.4,則時(shí)速在[40,60)內(nèi)的汽車有0.4200=80(輛). 16.下列命題中,正確的命題是________.(寫出所有正確命題的序號(hào)) ①回歸直線=x+恒過樣本點(diǎn)的中心(,),且至少過一個(gè)樣本點(diǎn); ②將一組數(shù)據(jù)的每個(gè)數(shù)據(jù)都加一個(gè)相同的常數(shù)后,方差不變; ③用R2來刻畫回歸效果,R2越接近0,說明回歸的效果越好; ④用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號(hào),按編號(hào)順序平均分成20組(1~8號(hào),9~16號(hào),…,153~160號(hào)),若第16組抽出的號(hào)碼為126,則第一組中用抽簽法確定的號(hào)碼為6. 答案?、冖? 解析 回歸直線=x+恒過樣本點(diǎn)的中心(,),不一定過樣本點(diǎn),①錯(cuò)誤;將一組數(shù)據(jù)的每個(gè)數(shù)據(jù)都加一個(gè)相同的常數(shù)后,數(shù)據(jù)的波動(dòng)性不變,故方差不變,②正確;用R2來刻畫回歸效果,R2越接近1,說明回歸的效果越好,③錯(cuò)誤;④中系統(tǒng)抽樣方法是正確的.故正確的命題有②④. 三、解答題(本題共4小題,共50分.解答應(yīng)寫出文字說明、證明過程或演算步驟) 17.(12分)某網(wǎng)站針對(duì)“2019年法定節(jié)假日調(diào)休安排”提出的A,B,C三種放假方案進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果如下: 支持A方案 支持B方案 支持C方案 35歲以下的人數(shù) 200 400 800 35歲以上(含35歲)的人數(shù) 100 100 400 (1)從所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從支持A方案的人中抽取了6人,求n的值; (2)從支持B方案的人中,用分層抽樣的方法抽取5人,這5人中在35歲以下的人數(shù)是多少?35歲以上(含35歲)的人數(shù)是多少? 解 (1)由題意知, =, 解得n=40. (2)這5人中,35歲以下的人數(shù)為400=4,35歲以上(含35歲)的人數(shù)為100=1. 18.(12分)每年的春節(jié)后,某市市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹活動(dòng)中去.為保證樹苗的質(zhì)量,林管部門在植樹前會(huì)對(duì)樹苗進(jìn)行檢測,現(xiàn)從甲、乙兩種樹苗中各抽取了10株樹苗,量出的高度如下(單位:厘米). 甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,34,26,10,44,46. (1)根據(jù)量出的高度,完成莖葉圖; (2)根據(jù)你填寫的莖葉圖,對(duì)甲、乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論. 解 (1)莖葉圖如圖所示. (2)統(tǒng)計(jì)結(jié)論: ①甲種樹苗的平均高度小于乙種樹苗的平均高度; ②甲種樹苗比乙種樹苗長得更整齊; ③甲種樹苗高度的中位數(shù)為27,乙種樹苗高度的中位數(shù)為32. 19.(13分)某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表: 年齡 [15,20) [20,25) [25,30) [30,35) [35,40) [40,45] 受訪人數(shù) 5 6 15 9 10 5 支持發(fā)展共享單車人數(shù) 4 5 12 9 7 3 由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系. 年齡低于35歲 年齡不低于35歲 合計(jì) 支持 不支持 合計(jì) 參考數(shù)據(jù): P(K2≥k0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 參考公式:K2=,其中n=a+b+c+d. 解 根據(jù)所給數(shù)據(jù)得到如下22列聯(lián)表: 年齡低于35歲 年齡不低于35歲 合計(jì) 支持 30 10 40 不支持 5 5 10 合計(jì) 35 15 50 根據(jù)22列聯(lián)表中的數(shù)據(jù),得到K2的觀測值為 k=≈2.38<2.706. ∴不能在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系. 20.(13分)某農(nóng)科所對(duì)冬季晝夜溫差x(℃)與某反季節(jié)新品種大豆種子的發(fā)芽數(shù)y(顆)之間的關(guān)系進(jìn)行了分析研究,他們分別記錄了12月1日至12月5日每天的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示: 12月1日 12月2日 12月3日 12月4日 12月5日 x(℃) 10 11 13 12 8 y(顆) 23 25 30 26 16 該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,剩下的2組數(shù)據(jù)用于線性回歸方程的檢驗(yàn). (1)請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+; (2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選的驗(yàn)證數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?如果可靠,請(qǐng)預(yù)測溫差為14℃時(shí)種子的發(fā)芽數(shù);如果不可靠,請(qǐng)說明理由. 解 (1)由已知得==12, ==27, 則=,=-=-3. 所以y關(guān)于x的線性回歸方程為=x-3. (2)當(dāng)x=10時(shí),=10-3=22,|22-23|<2; 當(dāng)x=8時(shí),=8-3=17,|17-16|<2. 所以(1)中所得到的線性回歸方程是可靠的. 當(dāng)x=14時(shí),有=14-3=32, 即預(yù)測當(dāng)溫差為14℃時(shí),每天每100顆種子的發(fā)芽數(shù)約為32顆.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 單元檢測十 算法、統(tǒng)計(jì)與統(tǒng)計(jì)案例提升卷單元檢測 文含解析 新人教A版 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 單元 檢測 算法 統(tǒng)計(jì) 案例 提升 解析 新人
鏈接地址:http://www.820124.com/p-6269914.html