《2019高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 基本初等函數(shù)Ⅱ(三角函數(shù))4.5 解三角形練習(xí) 理.doc》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 基本初等函數(shù)Ⅱ(三角函數(shù))4.5 解三角形練習(xí) 理.doc(11頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
4.5 解三角形
考綱解讀
考點(diǎn)
內(nèi)容解讀
要求
高考示例
??碱}型
預(yù)測熱度
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題
掌握
2017山東,9;2017浙江,14;
2017天津,15;2017北京,15;
2016課標(biāo)全國Ⅱ,13;
2016天津,3;2015天津,13
選擇題
填空題
★★★
2.正、余弦定理的應(yīng)用
能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題
掌握
2017課標(biāo)全國Ⅱ,17;
2017課標(biāo)全國Ⅲ,17;2017江蘇,18;
2016課標(biāo)全國Ⅲ,8;
2016山東,16;2016浙江,16;
2015湖北,13
解答題
★★★
分析解讀 1.利用正弦定理、余弦定理解三角形或者求解平面幾何圖形中有關(guān)量的問題,需要綜合應(yīng)用兩個(gè)定理及三角形有關(guān)知識.2.正弦定理和余弦定理的應(yīng)用比較廣泛,也比較靈活,在高考中常與面積或取值范圍結(jié)合進(jìn)行考查.3.會利用數(shù)學(xué)建模思想,結(jié)合三角形的知識,解決生產(chǎn)實(shí)踐中的相關(guān)問題.
五年高考
考點(diǎn)一 正弦定理和余弦定理
1.(2017山東,9,5分)在△ABC中,角A,B,C的對邊分別為a,b,c.若△ABC為銳角三角形,且滿足sin B(1+2cos C)=2sin Acos C+cos Asin C,則下列等式成立的是( )
A.a=2b B.b=2a
C.A=2B D.B=2A
答案 A
2.(2016天津,3,5分)在△ABC中,若AB=,BC=3,∠C=120,則AC=( )
A.1 B.2 C.3 D.4
答案 A
3.(2017浙江,14,5分)已知△ABC,AB=AC=4,BC=2.點(diǎn)D為AB延長線上一點(diǎn),BD=2,連接CD,則△BDC的面積是 ,cos∠BDC= .
答案 ;
4.(2016課標(biāo)全國Ⅱ,13,5分)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cos A=,cos C=,a=1,則b= .
答案
5.(2017天津,15,13分)在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a>b,a=5,c=6,sin B=.
(1)求b和sin A的值;
(2)求sin的值.
解析 (1)在△ABC中,因?yàn)閍>b,所以由sin B=,可得cos B=.由已知及余弦定理,有b2=a2+c2-2accos B=13,所以b=.
由正弦定理=,得sin A==.
所以,b的值為,sin A的值為.
(2)由(1)及a
b,則∠B=( )
A. B. C. D.
答案 A
8.(2013天津,6,5分)在△ABC中,∠ABC=,AB=,BC=3,則sin∠BAC=( )
A. B. C. D.
答案 C
9.(2013湖南,3,5分)在銳角△ABC中,角A,B所對的邊長分別為a,b.若2asin B=b,則角A等于( )
A. B. C. D.
答案 D
10.(2015天津,13,5分)在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知△ABC的面積為3,b-c=2,cos A=-,則a的值為 .
答案 8
11.(2015重慶,13,5分)在△ABC中,B=120,AB=,A的角平分線AD=,則AC= .
答案
12.(2015廣東,11,5分)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a=,sin B=,C=,則b= .
答案 1
13.(2015福建,12,4分)若銳角△ABC的面積為10,且AB=5,AC=8,則BC等于 .
答案 7
14.(2014廣東,12,5分)在△ABC中,角A,B,C所對的邊分別為a,b,c.已知bcos C+ccos B=2b,則= .
答案 2
15.(2014天津,12,5分)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知b-c=a,2sin B=3sin C,則cos A的值為 .
答案 -
16.(2014福建,12,4分)在△ABC中,A=60,AC=4,BC=2,則△ABC的面積等于 .
答案 2
17.(2013安徽,12,5分)設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c.若b+c=2a,3sin A=5sin B,則角C= .
答案 π
18.(2013浙江,16,4分)在△ABC中,∠C=90,M是BC的中點(diǎn).若sin∠BAM=,則sin∠BAC= .
答案
19.(2014遼寧,17,12分)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>c.已知=2,cos B=,b=3.求:
(1)a和c的值;
(2)cos(B-C)的值.
解析 (1)由=2得cacos B=2,
又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B.
又b=3,所以a2+c2=9+22=13.
解得a=2,c=3或a=3,c=2.
因a>c,所以a=3,c=2.
(2)在△ABC中,sin B===,
由正弦定理,得sin C=sin B==.
因a=b>c,所以C為銳角,
因此cos C===.
于是cos(B-C)=cos Bcos C+sin Bsin C
=+=.
20.(2013山東,17,12分)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a+c=6,b=2,cos B=.
(1)求a,c的值;
(2)求sin(A-B)的值.
解析 (1)由余弦定理b2=a2+c2-2accos B得b2=(a+c)2-2ac(1+cos B),
又b=2,a+c=6,cos B=,所以ac=9,解得a=3,c=3.
(2)在△ABC中,sin B==,
由正弦定理得sin A==.
因?yàn)閍=c,所以A為銳角,所以cos A==.
因此sin(A-B)=sin Acos B-cos Asin B=.
21.(2013重慶,20,12分)在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2+ab=c2.
(1)求C;
(2)設(shè)cos Acos B=,=,求tan α的值.
解析 (1)因?yàn)閍2+b2+ab=c2,
由余弦定理有cos C===-,
故C=.
(2)由題意得
=,
因此(tan αsin A-cos A)(tan αsin B-cos B)=,tan2αsin Asin B-tan α(sin Acos B+cos Asin B)+cos Acos B=,
tan2αsin Asin B-tan αsin(A+B)+cos Acos B=.①
因?yàn)镃=,A+B=,所以sin(A+B)=,
因?yàn)閏os(A+B)=cos Acos B-sin Asin B,即-sin Asin B=,解得sin Asin B=-=.
由①得tan2α-5tan α+4=0,
解得tan α=1或tan α=4.
考點(diǎn)二 正、余弦定理的應(yīng)用
1.(2016課標(biāo)全國Ⅲ,8,5分)在△ABC中,B=,BC邊上的高等于BC,則cos A=( )
A. B. C.- D.-
答案 C
2.(2017課標(biāo)全國Ⅱ,17,12分)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin(A+C)=8sin2.
(1)求cos B;
(2)若a+c=6,△ABC的面積為2,求b.
解析 本題考查了三角公式的運(yùn)用和余弦定理的應(yīng)用.
(1)由題設(shè)及A+B+C=π得sin B=8sin2,故sin B=4(1-cos B).
上式兩邊平方,整理得17cos2B-32cos B+15=0,
解得cos B=1(舍去),cos B=.
(2)由cos B=得sin B=,故S△ABC=acsin B=ac.
又S△ABC=2,則ac=.
由余弦定理及a+c=6得b2=a2+c2-2accos B=(a+c)2-2ac(1+cos B)=36-2=4.
所以b=2.
3.(2016浙江,16,14分)在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知b+c=2acos B.
(1)證明:A=2B;
(2)若△ABC的面積S=,求角A的大小.
解析 (1)由正弦定理得sin B+sin C=2sin Acos B,
故2sin Acos B=sin B+sin(A+B)=sin B+sin Acos B+cos Asin B,
于是sin B=sin(A-B).
又A,B∈(0,π),故08 B.ab(a+b)>16
C.6≤abc≤12 D.12≤abc≤24
答案 A
7.(2015湖北,13,5分)如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時(shí)測得公路北側(cè)一山頂D在西偏北30的方向上,行駛600 m后到達(dá)B處,測得此山頂在西偏北75的方向上,仰角為30,則此山的高度CD= m.
答案 100
8.(2013福建,13,4分)如圖,在△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC=,AB=3,AD=3,則BD的長為 .
答案
9.(2017江蘇,18,16分)如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32 cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14 cm和62 cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12 cm.現(xiàn)有一根玻璃棒l,其長度為40 cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(1)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
(2)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.
解析 (1)由正棱柱的定義,CC1⊥平面ABCD,所以平面A1ACC1⊥平面ABCD,CC1⊥AC.
記玻璃棒的另一端落在CC1上點(diǎn)M處.
因?yàn)锳C=10,AM=40,
所以MC==30,從而sin∠MAC=.
記AM與水面的交點(diǎn)為P1,過P1作P1Q1⊥AC,Q1為垂足,
則P1Q1⊥平面ABCD,故P1Q1=12,從而AP1==16.
答:玻璃棒l沒入水中部分的長度為16 cm.
(如果將“沒入水中部分”理解為“水面以上部分”,則結(jié)果為24 cm)
(2)如圖,O,O1是正棱臺的兩底面中心.
由正棱臺的定義,OO1⊥平面EFGH,所以平面E1EGG1⊥平面EFGH,O1O⊥EG.
同理,平面E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1.
記玻璃棒的另一端落在GG1上點(diǎn)N處.
過G作GK⊥E1G1,K為垂足,則GK=OO1=32.
因?yàn)镋G=14,E1G1=62,所以KG1==24,從而GG1===40.
設(shè)∠EGG1=α,∠ENG=β,
則sin α=sin=cos∠KGG1=.
因?yàn)?α<π,所以cos α=-.
在△ENG中,由正弦定理可得=,解得sin β=.
因?yàn)?<β<,所以cos β=.
于是sin∠NEG=sin(π-α-β)=sin(α+β)
=sin αcos β +cos αsin β=+=.
記EN與水面的交點(diǎn)為P2,過P2作P2Q2⊥EG交EG的延長線于Q2,則P2Q2⊥平面EFGH,故P2Q2=12,從而EP2==20.
答:玻璃棒l沒入水中部分的長度為20 cm.
(如果將“沒入水中部分”理解為“水面以上部分”,則結(jié)果為20 cm)
10.(2016北京,15,13分)在△ABC中,a2+c2=b2+ac.
(1)求∠B的大小;
(2)求cos A+cos C的最大值.
解析 (1)由余弦定理及題設(shè)得cos B===.
又因?yàn)?<∠B<π,所以∠B=.(6分)
(2)由(1)知∠A+∠C=.
cos A+cos C=cos A+cos
=cos A-cos A+sin A
=cos A+sin A
=cos.(11分)
因?yàn)?<∠A<,
所以當(dāng)∠A=時(shí),cos A+cos C取得最大值1.(13分)
11.(2015課標(biāo)Ⅱ,17,12分)△ABC中,D是BC上的點(diǎn),AD平分∠BAC,△ABD面積是△ADC面積的2倍.
(1)求;
(2)若AD=1,DC=,求BD和AC的長.
解析 (1)S△ABD=ABADsin∠BAD,
S△ADC=ACADsin∠CAD.
因?yàn)镾△ABD=2S△ADC,∠BAD=∠CAD,
所以AB=2AC.
由正弦定理可得==.
(2)因?yàn)镾△ABD∶S△ADC=BD∶DC,所以BD=.
在△ABD和△ADC中,由余弦定理知
AB2=AD2+BD2-2ADBDcos∠ADB,
AC2=AD2+DC2-2ADDCcos∠ADC.
故AB2+2AC2=3AD2+BD2+2DC2=6.
由(1)知AB=2AC,所以AC=1.
12.(2015浙江,16,14分)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A=,b2-a2=c2.
(1)求tan C的值;
(2)若△ABC的面積為3,求b的值.
解析 (1)由b2-a2=c2及正弦定理得sin2B-=sin2C,所以-cos 2B=sin2C.
又由A=,即B+C=π,得-cos 2B=sin 2C=2sin Ccos C,
解得tan C=2.
(2)由tan C=2,C∈(0,π)得sin C=,cos C=.
又因?yàn)閟in B=sin(A+C)=sin,
所以sin B=.
由正弦定理得c=b,
又因?yàn)锳=,bcsin A=3,所以bc=6,故b=3.
13.(2015陜西,17,12分)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量m=(a,b)與n=(cos A,sin B)平行.
(1)求A;
(2)若a=,b=2,求△ABC的面積.
解析 (1)因?yàn)閙∥n,所以asin B-bcos A=0,
由正弦定理,得sin Asin B-sin Bcos A=0,
又sin B≠0,從而tan A=,
由于00,所以c=3.
故△ABC的面積為bcsin A=.
解法二:由正弦定理,得=,
從而sin B=,
又由a>b,知A>B,所以cos B=.
故sin C=sin(A+B)=sin
=sin Bcos+cos Bsin=.
所以△ABC的面積為absin C=.
14.(2015江蘇,15,14分)在△ABC中,已知AB=2,AC=3,A=60.
(1)求BC的長;
(2)求sin 2C的值.
解析 (1)由余弦定理知,BC2=AB2+AC2-2ABACcos A=4+9-223=7,
所以BC=.
(2)由正弦定理知,=,
所以sin C=sin A==.
因?yàn)锳B
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎(jiǎng)勵(lì)!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019高考數(shù)學(xué)一輪復(fù)習(xí)
第四章
基本初等函數(shù)三角函數(shù)4.5
解三角形練習(xí)
2019
高考
數(shù)學(xué)
一輪
復(fù)習(xí)
第四
基本
初等
函數(shù)
三角函數(shù)
4.5
三角形
練習(xí)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.820124.com/p-6319564.html