《(浙江專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 考點(diǎn)規(guī)范練17 三角函數(shù)的圖象與性質(zhì).docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 考點(diǎn)規(guī)范練17 三角函數(shù)的圖象與性質(zhì).docx(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
考點(diǎn)規(guī)范練17 三角函數(shù)的圖象與性質(zhì)
基礎(chǔ)鞏固組
1.(2017課標(biāo)Ⅱ高考)函數(shù)f(x)=sin2x+π3的最小正周期為 ( )
A.4π B.2π C.π D.π2
答案C
解析由周期公式T=2π2=π.
2.若函數(shù)f(x)=3sin(2x+θ)(0<θ<π)是偶函數(shù),則f(x)在[0,π]上的遞增區(qū)間是( )
A.0,π2 B.π2,π C.π4,π2 D.3π4,π
答案B
解析因?yàn)楹瘮?shù)f(x)=3sin(2x+θ)(0<θ<π)是偶函數(shù),
所以f(x)=3sin2x+π2=3cos2x.
所以由2kπ-π≤2x≤2kπ可知其單調(diào)遞增區(qū)間是kπ-π2,kπ.又kπ-π2,kπ?[0,π],∴k=1,即所求單調(diào)遞增區(qū)間為π2,π.故選B.
3.函數(shù)y=sin2x-π3在區(qū)間-π2,π上的簡(jiǎn)圖是( )
答案A
解析將x=π6代入到函數(shù)解析式中得y=0,可排除C,D;
將x=π代入到函數(shù)解析式中求出函數(shù)值為-32,可排除B,故選A.
4.函數(shù)f(x)=tan2x-π3的單調(diào)遞增區(qū)間是( )
A.kπ2-π12,kπ2+5π12(k∈Z) B.kπ2-π12,kπ2+5π12(k∈Z)
C.kπ-π12,kπ+5π12(k∈Z) D.kπ+π6,kπ+2π3(k∈Z)
答案B
解析當(dāng)kπ-π2<2x-π3
0.若f(x)≤fπ12對(duì)x∈R恒成立,則ω的最小值為 .
答案4
解析由三角函數(shù)的性質(zhì)可知,當(dāng)x=π12時(shí),ωx+π6=2kπ+π2,∴ω=24k+4(k∈Z),取k=0可得ω的最小值為ω=4.
能力提升組
9.在函數(shù)①y=cos |2x|,②y=|cos x|,③y=sin2x+π6,④y=tan2x-π4中,最小正周期為π的所有函數(shù)是( )
A.②④ B.①③④ C.①②③ D.①③
答案C
解析可分別求出各個(gè)函數(shù)的最小正周期.
①y=cos|2x|=cos2x,T=2π2=π;②T=π;
③T=2π2=π;④T=π2.
綜上,知最小正周期為π的所有函數(shù)為①②③.故選C.
10.若函數(shù)f(x)=sin ωx(ω>0)在區(qū)間0,π3上單調(diào)遞增,在區(qū)間π3,π2上單調(diào)遞減,則ω=( )
A.35 B.12 C.32 D.1
答案C
解析∵y=sinωx(ω>0)的圖象過(guò)原點(diǎn),
∴當(dāng)0≤ωx≤π2,即0≤x≤π2ω時(shí),y=sinωx是增函數(shù).
當(dāng)π2≤ωx≤3π2,即π2ω≤x≤3π2ω時(shí),y=sinωx是減函數(shù).
由y=sinωx(ω>0)在區(qū)間0,π3上單調(diào)遞增,
在區(qū)間π3,π2上單調(diào)遞減知,π2ω=π3,故ω=32.
11.已知函數(shù)f(x)=3sin(3x+φ),x∈[0,π],則y=f(x)的圖象與直線y=2的交點(diǎn)個(gè)數(shù)最多有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
答案C
解析令f(x)=3sin(3x+φ)=2,
得sin(3x+φ)=23∈(-1,1),
又x∈[0,π],∴3x∈[0,3π],∴3x+φ∈[φ,3π+φ];
根據(jù)正弦函數(shù)的圖象與性質(zhì),可得
該方程在正弦函數(shù)一個(gè)半周期上最多有4個(gè)解,
即函數(shù)y=f(x)的圖象與直線y=2的交點(diǎn)最多有4個(gè).
故選C.
12.(2018浙江杭州二中期末)若函數(shù)y=f(x)同時(shí)具有下列三個(gè)性質(zhì):①最小正周期為π;②圖象關(guān)于直線x=π3對(duì)稱;③在區(qū)間-π6,π3上是增函數(shù).則y=f(x)的解析式可以是( )
A.y=sinx2+π6 B.y=cos2x+π3
C.y=cos2x-π6 D.y=sin2x-π6
答案D
解析由于函數(shù)y=sinx2+π6的最小正周期為2π12=4π,不滿足條件①,故排除A;由于當(dāng)x∈-π6,π6時(shí),2x+π3∈0,2π3,故y=cos2x+π3是減函數(shù),故排除B;由于當(dāng)x=π3時(shí),y=cos2x-π6=0,故它的圖象不關(guān)于直線x=π3對(duì)稱,故排除C;由于函數(shù)y=sin2x-π6的最小正周期為2π2=π,滿足條件①;當(dāng)x=π3時(shí),函數(shù)取得最大值,圖象關(guān)于直線x=π3對(duì)稱,故滿足條件②;在-π6,π3上,2x-π6∈-π2,π2,函數(shù)為增函數(shù),故滿足條件③;綜上可得,函數(shù)y=sin2x-π6滿足所給的三個(gè)條件,故選D.
13.(2017浙江寧波二模)已知函數(shù)f(x)=sin xcos 2x,則下列關(guān)于函數(shù)f(x)的結(jié)論中,錯(cuò)誤的是( )
A.最大值為1 B.圖象關(guān)于直線x=-π2對(duì)稱
C.既是奇函數(shù)又是周期函數(shù) D.圖象關(guān)于點(diǎn)3π4,0中心對(duì)稱
答案D
解析∵函數(shù)f(x)=sinxcos2x,當(dāng)x=3π2時(shí),f(x)取得最大值為1,故A正確;當(dāng)x=-π2時(shí),函數(shù)f(x)=1,為函數(shù)的最大值,故圖象關(guān)于直線x=-π2對(duì)稱;故B正確;函數(shù)f(x)滿足f(-x)=sin(-x)cos(-2x)=-sinxcos2x=-f(x),故函數(shù)f(x)為奇函數(shù),再根據(jù)f(x+2π)=sin(x+2π)cos[-2(x+2π)]=sinxcos2x,故f(x)的周期為2π,故C正確;由于f3π2-x+f(x)=-cosxcos(3π-2x)+sinxcos2x=cosxcos2x+sinxcos2x=cos2x(sinx+cosx)=0不一定成立,故f(x)圖象不一定關(guān)于點(diǎn)3π4,0中心對(duì)稱,故D不正確,故選D.
14.(2018浙江金華十校4月模擬)已知函數(shù)f(x)=4sin xsinx+π3,則函數(shù)f(x)的最小正周期T= ,在區(qū)間0,π2上的值域?yàn)椤 ?
答案π (0,3]
解析∵函數(shù)的解析式
f(x)=4sinxsinx+π3=2sinx(3cosx+sinx)
=23sinxcosx+2sin2x
=3sin2x-cos2x+1=2sin2x-π6+1,
∴函數(shù)f(x)的最小正周期T=2π2=π;
∵x∈0,π2,∴2x-π6∈-π6,5π6,
∴當(dāng)2x-π6=π2,即x=π3時(shí),f(x)max=2+1=3,
當(dāng)2x-π6=-π6,即x=0時(shí),f(x)min=-1+1=0,所以值域?yàn)?0,3].
15.已知函數(shù)f(x)=sin ωx最小正周期為π,其圖象向右平移φ0<φ<π2個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象.若對(duì)滿足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=π3,則φ等于 .
答案π6
解析由題意可知g(x)=sin(2x-2φ).
因?yàn)閨f(x1)-g(x2)|=2,可知f(x1)和g(x2)分別為f(x)和g(x)的最大值和最小值(或最小值和最大值).
不妨令2x1=π2+2kπ(k∈Z),2x2-2φ=-π2+2mπ(m∈Z),
則x1-x2=π2-φ+(k-m)π,又|x1-x2|min=π3,
所以當(dāng)k-m=0,即k=m時(shí),
又0<φ<π2,則有π2-φ=π3,解得φ=π6.
16.已知函數(shù)f(x)=sin2x+π3,對(duì)任意的x1,x2,x3,且0≤x1
下載提示(請(qǐng)認(rèn)真閱讀)
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎(jiǎng)勵(lì)!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
浙江專用2020版高考數(shù)學(xué)大一輪復(fù)習(xí)
第四章
三角函數(shù)、解三角形
考點(diǎn)規(guī)范練17
三角函數(shù)的圖象與性質(zhì)
浙江
專用
2020
高考
數(shù)學(xué)
一輪
復(fù)習(xí)
第四
三角函數(shù)
三角形
考點(diǎn)
規(guī)范
17
圖象
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。
鏈接地址:http://www.820124.com/p-6408912.html