(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 回扣4 數(shù)列試題 理.docx
《(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 回扣4 數(shù)列試題 理.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 回扣4 數(shù)列試題 理.docx(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
回扣4 數(shù) 列 1.牢記概念與公式 等差數(shù)列、等比數(shù)列 等差數(shù)列 等比數(shù)列 通項(xiàng)公式 an=a1+(n-1)d an=a1qn-1 (q≠0) 前n項(xiàng)和 Sn==na1+d (1)q≠1,Sn==; (2)q=1,Sn=na1 2.活用定理與結(jié)論 (1)等差、等比數(shù)列{an}的常用性質(zhì) 等差數(shù)列 等比數(shù)列 性質(zhì) ①若m,n,p,q∈N*, 且m+n=p+q, 則am+an=ap+aq; ②an=am+(n-m)d; ③Sm,S2m-Sm,S3m-S2m,…仍成等差數(shù)列 ①若m,n,p,q∈N*,且m+n=p+q,則aman=apaq; ②an=amqn-m; ③Sm,S2m-Sm,S3m-S2m,…仍成等比數(shù)列(Sm≠0) (2)判斷等差數(shù)列的常用方法 ①定義法 an+1-an=d(常數(shù))(n∈N*)?{an}是等差數(shù)列. ②通項(xiàng)公式法 an=pn+q(p,q為常數(shù),n∈N*)?{an}是等差數(shù)列. ③中項(xiàng)公式法 2an+1=an+an+2 (n∈N*)?{an}是等差數(shù)列. ④前n項(xiàng)和公式法 Sn=An2+Bn(A,B為常數(shù),n∈N*)?{an}是等差數(shù)列. (3)判斷等比數(shù)列的常用方法 ①定義法 =q (q是不為0的常數(shù),n∈N*)?{an}是等比數(shù)列. ②通項(xiàng)公式法 an=cqn (c,q均是不為0的常數(shù),n∈N*)?{an}是等比數(shù)列. ③中項(xiàng)公式法 a=anan+2(anan+1an+2≠0,n∈N*)?{an}是等比數(shù)列. 3.數(shù)列求和的常用方法 (1)等差數(shù)列或等比數(shù)列的求和,直接利用公式求和. (2)形如{anbn}(其中{an}為等差數(shù)列,{bn}為等比數(shù)列)的數(shù)列,利用錯(cuò)位相減法求和. (3)通項(xiàng)公式形如an=(其中a,b1,b2,c為常數(shù))用裂項(xiàng)相消法求和. (4)通項(xiàng)公式形如an=(-1)nn或an=a(-1)n(其中a為常數(shù),n∈N*)等正負(fù)項(xiàng)交叉的數(shù)列求和一般用并項(xiàng)法.并項(xiàng)時(shí)應(yīng)注意分n為奇數(shù)、偶數(shù)兩種情況討論. (5)分組求和法:分組求和法是解決通項(xiàng)公式可以寫成cn=an+bn形式的數(shù)列求和問題的方法,其中{an}與{bn}是等差(比)數(shù)列或一些可以直接求和的數(shù)列. (6)并項(xiàng)求和法:先將某些項(xiàng)放在一起求和,然后再求Sn. 1.已知數(shù)列的前n項(xiàng)和求an,易忽視n=1的情形,直接用Sn-Sn-1表示.事實(shí)上,當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1. 2.易混淆幾何平均數(shù)與等比中項(xiàng),正數(shù)a,b的等比中項(xiàng)是. 3.等差數(shù)列中不能熟練利用數(shù)列的性質(zhì)轉(zhuǎn)化已知條件,靈活整體代換進(jìn)行基本運(yùn)算.如等差數(shù)列{an}與{bn}的前n項(xiàng)和分別為Sn和Tn,已知=,求時(shí),無法正確賦值求解. 4.易忽視等比數(shù)列中公比q≠0導(dǎo)致增解,易忽視等比數(shù)列的奇數(shù)項(xiàng)或偶數(shù)項(xiàng)符號相同造成增解. 5.運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),易忘記分類討論.一定分q=1和q≠1兩種情況進(jìn)行討論. 6.利用錯(cuò)位相減法求和時(shí),要注意尋找規(guī)律,不要漏掉第一項(xiàng)和最后一項(xiàng). 7.裂項(xiàng)相消法求和時(shí),分裂前后的值要相等, 如≠-,而是=. 8.通項(xiàng)中含有(-1)n的數(shù)列求和時(shí),要把結(jié)果寫成n為奇數(shù)和n為偶數(shù)兩種情況的分段形式. 1.在等差數(shù)列{an}中,已知a3+a8=10,則3a5+a7=________. 答案 20 解析 設(shè)公差為d,則a3+a8=2a1+9d=10, 3a5+a7=3(a1+4d)+(a1+6d)=4a1+18d=210=20. 2.設(shè){an}是等差數(shù)列,若a4+a5+a6=21,則S9=____________. 答案 63 解析 ∵a4+a5+a6=21,∴3a5=21,可得a5=7, ∴S9===9a5=63. 3.已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2an-4(n∈N*),則an=________. 答案 2n+1 解析 an+1=Sn+1-Sn=2an+1-4-(2an-4)?an+1=2an,再令n=1,∴S1=2a1-4,解得a1=4,∴數(shù)列{an}是以4為首項(xiàng),2為公比的等比數(shù)列,∴an=42n-1=2n+1. 4.若Sn為等差數(shù)列{an}的前n項(xiàng)和,S9=-36,S13=-104,則a5與a7的等比中項(xiàng)為__________. 答案 4 解析 由S9=-36,S13=-104,可解得a1=4,d=-2,所以a5=-4,a7=-8. 設(shè)a5與a7的等比中項(xiàng)為x,則x2=a5a7=32, 所以x=4. 5.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+…+lna20=________. 答案 50 解析 ∵數(shù)列{an}為等比數(shù)列,且a10a11+a9a12=2e5, ∴a10a11+a9a12=2a10a11=2e5, ∴a10a11=e5, ∴l(xiāng)na1+lna2+…+lna20=ln(a1a2…a20) =ln(a10a11)10=ln(e5)10=ln e50=50. 6.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3=,且a2+a4=,則=________. 答案 2n-1 解析 設(shè)等比數(shù)列{an}的公比為q, 則解得 ∴===2n-1. 7.若數(shù)列{an}滿足a2-a1>a3-a2>a4-a3>…>an+1-an>…,則稱數(shù)列{an}為“差遞減”數(shù)列.若數(shù)列{an}是“差遞減”數(shù)列,且其通項(xiàng)an與其前n項(xiàng)和Sn(n∈N*)滿足2Sn=3an+2λ-1(n∈N*),則實(shí)數(shù)λ的取值范圍是________. 答案 解析 當(dāng)n=1時(shí),2a1=3a1+2λ-1,a1=1-2λ,當(dāng)n>1時(shí),2Sn-1=3an-1+2λ-1,所以2an=3an-3an-1,an=3an-1,所以an=(1-2λ)3n-1,an-an-1=(1-2λ)3n-1-(1-2λ)3n-2=(2-4λ)3n-2,依題意(2-4λ)3n-2是一個(gè)減數(shù)列,所以2-4λ<0,λ>. 8.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn是數(shù)列{an}前n項(xiàng)的和,則(n∈N*)的最小值為________. 答案 4 解析 據(jù)題意由a1,a3,a13成等比數(shù)列,可得(1+2d)2=1+12d,解得d=2,故an=2n-1,Sn=n2,因此====(n+1)+-2,據(jù)基本不等式知=(n+1)+-2≥2-2=4,當(dāng)n=2時(shí)取得最小值4. 9.已知首項(xiàng)都是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1-an+1bn+2bn+1bn=0. (1)令cn=,求數(shù)列{cn}的通項(xiàng)公式; (2)在(1)的條件下,若bn=3n-1,求數(shù)列{an}的前n項(xiàng)和Sn. 解 (1)因?yàn)閍nbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以-=2,即cn+1-cn=2.所以數(shù)列是首項(xiàng)c1=1,公差d=2的等差數(shù)列,故cn=2n-1(n∈N*). (2)由bn=3n-1知,an=cnbn=(2n-1)3n-1, 于是數(shù)列{an}的前n項(xiàng)和Sn=130+331+532+…+(2n-1)3n-1, 3Sn=131+332+…+(2n-3)3n-1+(2n-1)3n, 兩式相減得-2Sn=1+2(31+32+…+3n-1)-(2n-1)3n=-2-(2n-2)3n, 所以Sn=(n-1)3n+1(n∈N*). 10.各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:Sn=a+an+(n∈N*). (1)求數(shù)列{an}的通項(xiàng)公式; (2)設(shè)數(shù)列的前n項(xiàng)和為Tn,證明:對一切正整數(shù)n,都有Tn<. (1)解 由Sn=a+an+, ① 當(dāng)n≥2時(shí),Sn-1=a+an-1+, ② 由①-②化簡得(an+an-1)(an-an-1-2)=0, 又∵數(shù)列{an}的各項(xiàng)為正數(shù), ∴當(dāng)n≥2時(shí),an-an-1=2, 故數(shù)列{an}成等差數(shù)列,公差為2, a1=S1=a+a1+, 解得a1=1,∴an=2n-1(n∈N*). (2)證明 Tn=+++…++ =+++…++. 當(dāng)n=1時(shí),T1=1<, 當(dāng)n≥2時(shí),∵=< ==, ∴Tn=+++…++ ≤1+++…++ =1+ =1+-<. 綜上,對一切正整數(shù)n,都有Tn<.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 江蘇專用2019高考數(shù)學(xué)二輪復(fù)習(xí) 回扣4 數(shù)列試題 江蘇 專用 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 回扣 數(shù)列 試題
鏈接地址:http://www.820124.com/p-6415151.html