【溫馨提示】====【1】設(shè)計(jì)包含CAD圖紙 和 DOC文檔,均可以在線預(yù)覽,所見(jiàn)即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無(wú)任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡(jiǎn)潔性,店家將三維文件夾進(jìn)行了打包。三維預(yù)覽圖,均為店主電腦打開(kāi)軟件進(jìn)行截圖的,保證能夠打開(kāi),下載后解壓即可。======【3】特價(jià)促銷(xiāo),,拼團(tuán)購(gòu)買(mǎi),,均有不同程度的打折優(yōu)惠,,詳情可咨詢(xún)QQ:1304139763 或者 414951605======【4】 題目最后的備注【LB3系列】為店主整理分類(lèi)的代號(hào),與課題內(nèi)容無(wú)關(guān),請(qǐng)忽視
本科學(xué)生畢業(yè)設(shè)計(jì)
輕型貨車(chē)驅(qū)動(dòng)橋設(shè)計(jì)
系部名稱(chēng): 汽車(chē)工程系
專(zhuān)業(yè)班級(jí): 車(chē)輛工程 B05-16班
學(xué)生姓名: 王建勛
指導(dǎo)教師: 王永梅
職 稱(chēng): 講 師
黑 龍 江 工 程 學(xué) 院
二○○九年六月
The Graduation Design for Bachelor's Degree
The Design for Driving Axle of Pickup Truck
Candidate:Wang Jianxun
Specialty: Vehicle Engineering
Class: B05-16
Supervisor:Lecturer. Wang yongmei
Heilongjiang Institute of Technology
2009-06·Harbin
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計(jì)
摘 要
輕型汽車(chē)在商用汽車(chē)生產(chǎn)中占有很大的比重,而且驅(qū)動(dòng)橋在整車(chē)中十分重要。驅(qū)動(dòng)橋作為汽車(chē)四大總成之一,它的性能的好壞直接影響整車(chē)性能,而對(duì)于載貨汽車(chē)顯得尤為重要。為滿足目前當(dāng)前載貨汽車(chē)的快速、高效率、高效益的需要時(shí),必須要搭配一個(gè)高效、可靠的驅(qū)動(dòng)橋。設(shè)計(jì)出結(jié)構(gòu)簡(jiǎn)單、工作可靠、造價(jià)低廉的驅(qū)動(dòng)橋,能大大降低整車(chē)生產(chǎn)的總成本,推動(dòng)汽車(chē)經(jīng)濟(jì)的發(fā)展,并且通過(guò)對(duì)汽車(chē)驅(qū)動(dòng)橋的學(xué)習(xí)和設(shè)計(jì)實(shí)踐,可以更好的學(xué)習(xí)并掌握現(xiàn)代汽車(chē)設(shè)計(jì)與機(jī)械設(shè)計(jì)的全面知識(shí)和技能,所以本題設(shè)計(jì)一款結(jié)構(gòu)優(yōu)良的輕型貨車(chē)驅(qū)動(dòng)橋具有一定的實(shí)際意義。
本文首先確定主要部件的結(jié)構(gòu)型式和主要設(shè)計(jì)參數(shù),在分析驅(qū)動(dòng)橋各部分結(jié)構(gòu)形式、發(fā)展過(guò)程及其以往形式的優(yōu)缺點(diǎn)的基礎(chǔ)上,確定了總體設(shè)計(jì)方案,采用傳統(tǒng)設(shè)計(jì)方法對(duì)驅(qū)動(dòng)橋各部件主減速器、差速器、半軸、橋殼進(jìn)行設(shè)計(jì)計(jì)算并完成校核。最后運(yùn)用AUTOCAD完成裝配圖和主要零件圖的繪制。
關(guān)鍵詞:輕型貨車(chē);驅(qū)動(dòng)橋;單級(jí)主減速器;差速器;半軸;橋殼
45
ABSTRACT
. Pickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance.
In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components.
Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 選題的背景目的及意義 1
1.2 國(guó)內(nèi)外驅(qū)動(dòng)橋研究狀況 1
1.3 設(shè)計(jì)主要內(nèi)容和預(yù)期結(jié)果 3
第2章 驅(qū)動(dòng)橋的總體方案確定 4
2.1驅(qū)動(dòng)橋的種類(lèi)結(jié)構(gòu)和設(shè)計(jì)要求 4
2.1.1汽車(chē)車(chē)橋的種類(lèi) 4
2.1.2驅(qū)動(dòng)橋的種類(lèi) 4
2.1.3驅(qū)動(dòng)橋結(jié)構(gòu)組成 4
2.1.4 驅(qū)動(dòng)橋設(shè)計(jì)要求 5
2.2 設(shè)計(jì)車(chē)型主要參數(shù) 5
2.3主減速器結(jié)構(gòu)方案的確定 6
2.3.1 主減速比的計(jì)算 6
2.3.2 主減速器的齒輪類(lèi)型 6
2.3.3 主減速器的減速形式 8
2.3.4 主減速器主從動(dòng)錐齒輪的支承形式及安裝方法 9
2.4 差速器結(jié)構(gòu)方案的確定 10
2.5半軸的形式確定 11
2.6 橋殼形式的確定 12
2.7本章小結(jié) 13
第3章 主減速器設(shè)計(jì) 14
3.1概述 14
3.2主減速器齒輪參數(shù)的選擇與強(qiáng)度計(jì)算 14
3.2.1 主減速器計(jì)算載荷的確定 14
3.2.2 主減速器齒輪參數(shù)的選擇 15
3.2.3 主減速器齒輪強(qiáng)度計(jì)算 18
3.2.4 主減速器軸承計(jì)算 24
3.3主減速器齒輪材料及熱處理 30
3.4主減速器的潤(rùn)滑 30
3.5 本章小結(jié) 31
第4章 差速器設(shè)計(jì) 32
4.1概述 32
4.2對(duì)稱(chēng)式圓錐行星齒輪差速器原理 32
4.3 對(duì)稱(chēng)式圓錐行星齒輪差速器的結(jié)構(gòu) 33
4.4對(duì)稱(chēng)圓錐行星錐齒輪差速器的設(shè)計(jì) 34
4.4.1 差速器齒輪的基本參數(shù)選擇 34
4.4.2 差速器齒輪的幾何尺寸計(jì)算 36
4.4.3 差速器齒輪的強(qiáng)度計(jì)算 37
4.4.4 差速器齒輪的材料 39
4.5 本章小結(jié) 39
第5章 半軸設(shè)計(jì) 40
5.1概述 40
5.2半軸的設(shè)計(jì)與計(jì)算 40
5.2.1全浮式半軸的計(jì)算載荷的確定 40
5.2.2半軸桿部直徑的初選 42
5.2.3 全浮式半軸強(qiáng)度計(jì)算 42
5.2.4 全浮式半軸花鍵強(qiáng)度計(jì)算 42
5.2.5 半軸材料與熱處理 44
5.3 本章小結(jié) 44
第6章 驅(qū)動(dòng)橋橋殼的設(shè)計(jì) 45
6.1概述 45
6.2橋殼的受力分析及強(qiáng)度計(jì)算 45
6.2.1 橋殼的靜彎曲應(yīng)力計(jì)算 45
6.2.2 在不平路面沖擊載荷作用下橋殼的強(qiáng)度 47
6.2.3 汽車(chē)以最大牽引力行駛時(shí)的橋殼的強(qiáng)度計(jì)算 47
6.2.4 汽車(chē)緊急制動(dòng)時(shí)的橋殼強(qiáng)度計(jì)算 49
6.2.5 汽車(chē)受最大側(cè)向力時(shí)橋殼強(qiáng)度計(jì)算 50
6.3 本章小結(jié) 54
結(jié)論 55
參考文獻(xiàn) 56
致謝 57
附錄A 58
附錄B …………………………………………………………………………………………………64
第1章 緒 論
1.1 選題背景目的及意義
在我國(guó)輕型貨車(chē)占有較大市場(chǎng),據(jù)中國(guó)汽車(chē)工業(yè)協(xié)會(huì)統(tǒng)計(jì),截至2007年底,國(guó)內(nèi)輕型貨車(chē)(1.8噸<總質(zhì)量≤6噸)共銷(xiāo)售100.53萬(wàn)輛,同比增長(zhǎng)了17.64%。2008年,國(guó)家對(duì)“三農(nóng)”的投入不斷加大,同時(shí)隨著鐵路不斷提速也為“門(mén)到門(mén)”的短途運(yùn)輸提供了機(jī)會(huì),受此影響,輕型貨車(chē)在以后幾年也會(huì)呈現(xiàn)明顯增長(zhǎng)。我國(guó)2008年上半年貨車(chē)?yán)塾?jì)銷(xiāo)售約93萬(wàn)輛,其中輕型貨車(chē)61萬(wàn)輛,同比增長(zhǎng)20.2%,可見(jiàn)輕型汽車(chē)在商用汽車(chē)生產(chǎn)中占有很大的比重[1]。
作為汽車(chē)關(guān)鍵零部件之一的汽車(chē)驅(qū)動(dòng)橋也得到相應(yīng)的發(fā)展,各生產(chǎn)廠家在研發(fā)和生產(chǎn)過(guò)程中基本上形成了專(zhuān)業(yè)化、系列化、批量化的局面,汽車(chē)驅(qū)動(dòng)橋是汽車(chē)的重要總成,承載著汽車(chē)車(chē)架及承載式車(chē)身經(jīng)懸架給予的鉛垂力、縱向力、橫向力及其力矩,以及沖擊載荷;驅(qū)動(dòng)橋還傳遞著傳動(dòng)系中的最大轉(zhuǎn)矩,橋殼還承受著反作用力矩。汽車(chē)驅(qū)動(dòng)橋結(jié)構(gòu)型式和設(shè)計(jì)參數(shù)除對(duì)汽車(chē)的可靠性與耐久性有重要影響外,也對(duì)汽車(chē)的行駛性能如動(dòng)力性、經(jīng)濟(jì)性、平順性、通過(guò)性、機(jī)動(dòng)性和操動(dòng)穩(wěn)定性等有直接影響。汽車(chē)驅(qū)動(dòng)橋設(shè)計(jì)涉及的機(jī)械零部件及元件的品種極為廣泛,對(duì)這些零部件、元件及總成的制造也幾乎要設(shè)計(jì)到所有的現(xiàn)代機(jī)械制造工藝,設(shè)計(jì)出結(jié)構(gòu)簡(jiǎn)單、工作可靠、造價(jià)低廉的驅(qū)動(dòng)橋,能大大降低整車(chē)生產(chǎn)的總成本,推動(dòng)汽車(chē)經(jīng)濟(jì)的發(fā)展,并且通過(guò)對(duì)汽車(chē)驅(qū)動(dòng)橋的學(xué)習(xí)和設(shè)計(jì)實(shí)踐,可以更好的學(xué)習(xí)并掌握現(xiàn)代汽車(chē)設(shè)計(jì)與機(jī)械設(shè)計(jì)的全面知識(shí)和技能,所以本題設(shè)計(jì)一款結(jié)構(gòu)優(yōu)良的輕型貨車(chē)驅(qū)動(dòng)橋具有一定的實(shí)際意義。
1.2 國(guó)內(nèi)外驅(qū)動(dòng)橋研究狀況
1、國(guó)外研究現(xiàn)狀
國(guó)外輕型貨車(chē)驅(qū)動(dòng)橋開(kāi)發(fā)技術(shù)已經(jīng)非常的成熟,建立新的驅(qū)動(dòng)橋開(kāi)發(fā)模式成為國(guó)內(nèi)外驅(qū)動(dòng)橋開(kāi)發(fā)團(tuán)體的新目標(biāo)。驅(qū)動(dòng)橋設(shè)計(jì)新方法的應(yīng)用使得其開(kāi)發(fā)周期縮短,成本降低,可靠性增加。國(guó)外的最新開(kāi)發(fā)模式和驅(qū)動(dòng)橋新技術(shù)包括:
(1) 并行工程開(kāi)發(fā)模式
并行工程開(kāi)發(fā)模式是對(duì)在一定范圍內(nèi)的不同功能或相同功能不同性能、不同規(guī)格的機(jī)械產(chǎn)品進(jìn)行功能分析的基礎(chǔ)上,劃分并設(shè)計(jì)出一系列功能模塊,然后通過(guò)模塊的選擇和組合構(gòu)成不同產(chǎn)品的一種設(shè)計(jì)方法,能夠縮短新產(chǎn)品的設(shè)計(jì)時(shí)間、降低成本、提升質(zhì)量、提高市場(chǎng)競(jìng)爭(zhēng)力,以DANA為代表的意大利企業(yè)多已采用了該類(lèi)設(shè)計(jì)方法, 優(yōu)點(diǎn)是: 減少設(shè)計(jì)及工裝制造的投入, 減少了零件種類(lèi), 提高規(guī)模生產(chǎn)程度, 降低制造費(fèi)用, 提高市場(chǎng)響應(yīng)速度等。
(2) 模態(tài)分析
模態(tài)分析是對(duì)工程結(jié)構(gòu)進(jìn)行振動(dòng)分析研究的最先進(jìn)的現(xiàn)代方法與手段之一。它可以定義為對(duì)結(jié)構(gòu)動(dòng)態(tài)特性的解析分析(有限元分析)和實(shí)驗(yàn)分析(實(shí)驗(yàn)?zāi)B(tài)分析),其結(jié)構(gòu)動(dòng)態(tài)特性用模態(tài)參數(shù)來(lái)表征。模態(tài)分析技術(shù)的特點(diǎn)與優(yōu)點(diǎn)是在對(duì)系統(tǒng)做動(dòng)力學(xué)分析時(shí),用模態(tài)坐標(biāo)代替物理學(xué)坐標(biāo),從而可大大壓縮系統(tǒng)分析的自由度數(shù)目,分析精度較高。驅(qū)動(dòng)橋的振動(dòng)特性不但直接影響其本身的強(qiáng)度,而且對(duì)整車(chē)的舒適性和平順性有著至關(guān)重要的影響。因此,對(duì)驅(qū)動(dòng)橋進(jìn)行模態(tài)分析,掌握和改善其振動(dòng)特性,是設(shè)計(jì)中的重要方面。
(3) 驅(qū)動(dòng)橋殼的有限元分析方法
有限元法不需要對(duì)所分析的結(jié)構(gòu)進(jìn)行嚴(yán)格的簡(jiǎn)化,既可以考慮各種計(jì)算要求和條件,也可以計(jì)算各種工況,而且計(jì)算精度高。有限元法將具有無(wú)限個(gè)自由度的連續(xù)體離散為有限個(gè)自由度的單元集合體,使問(wèn)題簡(jiǎn)化為適合于數(shù)值解法的問(wèn)題。只要確定了單元的力學(xué)特性,就可以按照結(jié)構(gòu)分析的方法求解,使分析過(guò)程大為簡(jiǎn)化,配以計(jì)算機(jī)就可以解決許多解析法無(wú)法解決的復(fù)雜工程問(wèn)題[2]。目前,有限元法己經(jīng)成為求解數(shù)學(xué)、物理、力學(xué)以及工程問(wèn)題的一種有效的數(shù)值方法,也為驅(qū)動(dòng)橋殼設(shè)計(jì)提供了強(qiáng)有力的工具。
(4) 高性能制動(dòng)器技術(shù)
在發(fā)達(dá)國(guó)家驅(qū)動(dòng)橋產(chǎn)品中, 已出現(xiàn)了自循環(huán)冷卻功能的濕式制動(dòng)器橋、帶散熱風(fēng)送的盤(pán)式制動(dòng)器橋、適于ABS的蹄、鼓式和盤(pán)式制動(dòng)器橋、帶自動(dòng)補(bǔ)償間隙的盤(pán)式制動(dòng)器等配置高性能制動(dòng)器橋, 同時(shí)制動(dòng)器的布置位置也出現(xiàn)了從橋臂處分別向橋包總成和輪邊端部轉(zhuǎn)移的趨勢(shì)。前種處理方式易于散熱, 后種處理方式為了降低成本, 甚至有廠商把制動(dòng)器的殼體與橋殼鑄為一體, 既易于散熱,又利于降低材料成本, 但這對(duì)鑄造技術(shù)、鑄造精度和加工精度都提出了極高的要求。
(5) 電子智能控制技術(shù)進(jìn)入驅(qū)動(dòng)橋產(chǎn)品
電子智能控制技術(shù)已經(jīng)在汽車(chē)業(yè)得到了快速發(fā)展,如,現(xiàn)代汽車(chē)上使用的ABS(制動(dòng)防抱死控制)、ASR(驅(qū)動(dòng)力控制系統(tǒng))等系統(tǒng)[2]。
2、國(guó)內(nèi)研究現(xiàn)狀
我國(guó)驅(qū)動(dòng)橋制造企業(yè)的開(kāi)發(fā)模式主要由測(cè)繪、引進(jìn)、自主開(kāi)發(fā)三種組成。主要存在技術(shù)含量低,開(kāi)發(fā)模式落后,技術(shù)創(chuàng)新力不夠,計(jì)算機(jī)輔助設(shè)計(jì)應(yīng)用少等問(wèn)題。一些企業(yè)技術(shù)力量相對(duì)要好些的企業(yè),測(cè)繪的是從國(guó)外引進(jìn)的原裝橋,并且這些企業(yè)一般具有較為完善的開(kāi)發(fā)體系和流程,也具有較完善的試驗(yàn)手段,但是開(kāi)發(fā)過(guò)程屬于對(duì)國(guó)外的仿制,對(duì)其逆向研究后結(jié)合自我情況生產(chǎn)。
總之,我國(guó)汽車(chē)驅(qū)動(dòng)橋的研究設(shè)計(jì)與世界先進(jìn)驅(qū)動(dòng)橋設(shè)計(jì)技術(shù)還有一定的差距,我國(guó)車(chē)橋制造業(yè)雖然有一些成果,但都是在引進(jìn)國(guó)外技術(shù)、紡制、再加上自己改進(jìn)的基礎(chǔ)上了取得的。個(gè)別比較有實(shí)力的企業(yè),雖有自己獨(dú)立的研發(fā)機(jī)構(gòu)但都處于發(fā)展的初期。在科技迅速發(fā)展的推動(dòng)下,高新技術(shù)在汽車(chē)領(lǐng)域的應(yīng)用和推廣,各種國(guó)外汽車(chē)新技術(shù)的引進(jìn),研究團(tuán)隊(duì)自身研發(fā)能力的提高,我國(guó)的驅(qū)動(dòng)橋設(shè)計(jì)和制造會(huì)逐漸發(fā)展起來(lái),并跟上世界先進(jìn)的汽車(chē)零部件設(shè)計(jì)制造技術(shù)水平[3]。
1.3 設(shè)計(jì)主要內(nèi)容和預(yù)期成果
1、驅(qū)動(dòng)橋結(jié)構(gòu)形式及布置方案的確定。
2、驅(qū)動(dòng)橋零部件尺寸參數(shù)確定及校核:
(1)完成主減速器的基本參數(shù)選擇與設(shè)計(jì)計(jì)算;
(2)完成差速器的設(shè)計(jì)與計(jì)算;
(3)完成半軸的設(shè)計(jì)與計(jì)算;
(4)完成驅(qū)動(dòng)橋橋殼的受力分析及強(qiáng)度計(jì)算。
3、完成驅(qū)動(dòng)橋驅(qū)動(dòng)橋裝配圖和主要部分零件。
第2章 驅(qū)動(dòng)橋的總體方案確定
2.1 驅(qū)動(dòng)橋的結(jié)構(gòu)和種類(lèi)和設(shè)計(jì)要求
2.1.1 汽車(chē)車(chē)橋的種類(lèi)
汽車(chē)的驅(qū)動(dòng)橋與從動(dòng)橋統(tǒng)稱(chēng)為車(chē)橋,車(chē)橋通過(guò)懸架與車(chē)架(或承載式車(chē)身)相連,它的兩端安裝車(chē)輪,其功用是傳遞車(chē)架(或承載式車(chē)身)于車(chē)輪之間各方向的作用力及其力矩。
根據(jù)懸架結(jié)構(gòu)的不同,車(chē)橋分為整體式和斷開(kāi)式兩種。當(dāng)采用非獨(dú)立懸架時(shí),車(chē)橋中部是剛性的實(shí)心或空心梁,這種車(chē)橋即為整體式車(chē)橋;斷開(kāi)式車(chē)橋?yàn)榛顒?dòng)關(guān)節(jié)式結(jié)構(gòu),與獨(dú)立懸架配用。在絕大多數(shù)的載貨汽車(chē)和少數(shù)轎車(chē)上,采用的是整體式非斷開(kāi)式。斷開(kāi)式驅(qū)動(dòng)橋兩側(cè)車(chē)輪可獨(dú)立相對(duì)于車(chē)廂上下擺動(dòng)。
根據(jù)車(chē)橋上車(chē)輪的作用,車(chē)橋又可分為轉(zhuǎn)向橋、驅(qū)動(dòng)橋、轉(zhuǎn)向驅(qū)動(dòng)橋和支持橋四種類(lèi)型。其中,轉(zhuǎn)向橋和支持橋都屬于從動(dòng)橋,一般貨車(chē)多以前橋?yàn)檗D(zhuǎn)向橋,而后橋或中后兩橋?yàn)轵?qū)動(dòng)橋。
2.1.2 驅(qū)動(dòng)橋的種類(lèi)
驅(qū)動(dòng)橋位于傳動(dòng)系末端,其基本功用首先是增扭、降速,改變轉(zhuǎn)矩的傳遞方向,即增大由傳動(dòng)軸或直接從變速器傳來(lái)的轉(zhuǎn)矩,并合理的分配給左、右驅(qū)動(dòng)車(chē)輪,其次,驅(qū)動(dòng)橋還要承受作用于路面和車(chē)架或車(chē)廂之間的垂直力、縱向力和橫向力,以及制動(dòng)力矩和反作用力矩。
驅(qū)動(dòng)橋分為斷開(kāi)式和非斷開(kāi)式兩種。驅(qū)動(dòng)橋的結(jié)構(gòu)型式與驅(qū)動(dòng)車(chē)輪的懸掛型式密切相關(guān)。當(dāng)驅(qū)動(dòng)車(chē)輪采用非獨(dú)立懸掛時(shí),例如在絕大多數(shù)的載貨汽車(chē)和部分小轎車(chē)上,都是采用非斷開(kāi)式驅(qū)動(dòng)橋,其橋殼是一根支撐在左右驅(qū)動(dòng)車(chē)輪上的剛性空心梁,主減速器、差速器和半軸等所有的傳動(dòng)件都裝在其中;當(dāng)驅(qū)動(dòng)車(chē)輪采用獨(dú)立懸掛時(shí),則配以斷開(kāi)式驅(qū)動(dòng)橋[4]。
2.1.3 驅(qū)動(dòng)橋結(jié)構(gòu)組成
在多數(shù)汽車(chē)中,驅(qū)動(dòng)橋包括主減速器、差速器、驅(qū)動(dòng)車(chē)輪的傳動(dòng)裝置(半軸)及橋殼等部件如圖1.1所示。
1 2 3 4 5 6
1-輪轂 2-半軸 3-鋼板彈簧座 4-主減速器從動(dòng)錐齒輪 5-主減速器主動(dòng)錐齒輪 6-差速器總成
圖1.1 驅(qū)動(dòng)橋
2.1.4 驅(qū)動(dòng)橋設(shè)計(jì)要求
1、選擇適當(dāng)?shù)闹鳒p速比,以保證汽車(chē)在給定的條件下具有最佳的動(dòng)力性和燃油經(jīng)濟(jì)性。
2、外廓尺寸小,保證汽車(chē)具有足夠的離地間隙,以滿足通過(guò)性的要求。
3、齒輪及其他傳動(dòng)件工作平穩(wěn),噪聲小。
4、在各種載荷和轉(zhuǎn)速工況下有較高的傳動(dòng)效率。
5、具有足夠的強(qiáng)度和剛度,以承受和傳遞作用于路面和車(chē)架或車(chē)身間的各種力和
力矩;在此條件下,盡可能降低質(zhì)量,尤其是簧下質(zhì)量,減少不平路面的沖擊載荷,提高汽車(chē)的平順性。
6、與懸架導(dǎo)向機(jī)構(gòu)運(yùn)動(dòng)協(xié)調(diào)。
7、結(jié)構(gòu)簡(jiǎn)單,加工工藝性好,制造容易,維修,調(diào)整方便。
2.2設(shè)計(jì)車(chē)型主要參數(shù)
表2.1 設(shè)計(jì)車(chē)型參數(shù)
輪胎
7.5-16
發(fā)動(dòng)機(jī)最大功率
71/3200
Pemax kW/np (r/min)
發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩
201/2200
Temax N·m/nr (r/min)
裝載質(zhì)量
3000
kg
汽車(chē)滿載總質(zhì)量
6000
kg
滿載時(shí)軸荷分布
前軸1900 后軸4100
kg
最大車(chē)速
90
km/h
輪距(雙胎中心線)
1458
mm
鋼板彈簧座中心距離
865
mm
2.3 主減速器結(jié)構(gòu)方案的確定
2.3.1主減速比的計(jì)算
主減速比對(duì)主減速器的結(jié)構(gòu)形式、輪廓尺寸、質(zhì)量大小影響很大。當(dāng)變速器處于最高檔位時(shí)對(duì)汽車(chē)的動(dòng)力性和燃料經(jīng)濟(jì)性都有直接影響。的選擇應(yīng)在汽車(chē)總體設(shè)計(jì)時(shí)和傳動(dòng)系統(tǒng)的總傳動(dòng)比一起由整車(chē)動(dòng)力計(jì)算來(lái)確定??衫迷诓煌南碌墓β势胶鈭D來(lái)計(jì)算對(duì)汽車(chē)動(dòng)力性的影響。通過(guò)優(yōu)化設(shè)計(jì),對(duì)發(fā)動(dòng)機(jī)與傳動(dòng)系參數(shù)作最佳匹配的方法來(lái)選擇值,可是汽車(chē)獲得最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。
對(duì)于具有很大功率儲(chǔ)備的轎車(chē)、長(zhǎng)途公共汽車(chē)尤其是競(jìng)賽車(chē)來(lái)說(shuō),在給定發(fā)動(dòng)機(jī)最大功率及其轉(zhuǎn)速的情況下,所選擇的值應(yīng)能保證這些汽車(chē)有盡可能高的最高車(chē)速。這時(shí)值應(yīng)按下式來(lái)確定[5]:
=0.377 (2.1)式中:——車(chē)輪的滾動(dòng)半徑,=0.405m
——變速器最高檔傳動(dòng)比1.0(為直接檔)。
——最大功率轉(zhuǎn)速3200 r/min
——最大車(chē)速90km/h
對(duì)于與其他汽車(chē)來(lái)說(shuō),為了得到足夠的功率而使最高車(chē)速稍有下降,一般選得比最小值大10%~25%,即按下式選擇:
=(0.377~0.472) (2.2)
經(jīng)計(jì)算初步確定=6.14
按上式求得的應(yīng)與同類(lèi)汽車(chē)的主減速比相比較,并考慮到主、從動(dòng)主減速齒輪可能的齒數(shù)對(duì)予以校正并最后確定。
2.3.2主減速器的齒輪類(lèi)型
按齒輪副結(jié)構(gòu)型式分,主減速器的齒輪傳動(dòng)主要有螺旋錐齒輪式傳動(dòng)、雙曲面齒輪式傳動(dòng)、圓柱齒輪式傳動(dòng)(又可分為軸線固定式齒輪傳動(dòng)和軸線旋轉(zhuǎn)式齒輪傳動(dòng)即行星齒輪式傳動(dòng))和蝸桿蝸輪式傳動(dòng)等形式。
在發(fā)動(dòng)機(jī)橫置的汽車(chē)驅(qū)動(dòng)橋上,主減速器往往采用簡(jiǎn)單的斜齒圓柱齒輪;在發(fā)動(dòng)機(jī)縱置的汽車(chē)驅(qū)動(dòng)橋上,主減速器往往采用圓錐齒輪式傳動(dòng)或準(zhǔn)雙曲面齒輪式傳動(dòng)。
在現(xiàn)代貨車(chē)車(chē)驅(qū)動(dòng)橋中,主減速器采用得最廣泛的是螺旋錐齒輪和雙曲面齒輪。
螺旋錐齒輪如圖2.1(a)所示主、從動(dòng)齒輪軸線交于一點(diǎn),交角都采用90度。螺旋錐齒輪的重合度大,嚙合過(guò)程是由點(diǎn)到線,因此,螺旋錐齒輪能承受大的載荷,而且工作平穩(wěn),即使在高速運(yùn)轉(zhuǎn)時(shí)其噪聲和振動(dòng)也是很小的。
雙曲面齒輪如圖2.1(b)所示主、從動(dòng)齒輪軸線不相交而呈空間交叉。和螺旋錐齒輪相比,雙曲面齒輪的優(yōu)點(diǎn)有:
1、尺寸相同時(shí),雙曲面齒輪有更大的傳動(dòng)比。
2、傳動(dòng)比一定時(shí),如果主動(dòng)齒輪尺寸相同,雙曲面齒輪比螺旋錐齒輪有較大軸徑,較高的輪齒強(qiáng)度以及較大的主動(dòng)齒輪軸和軸承剛度。
(b)
(a)
圖2.1 螺旋錐齒輪與雙曲面齒輪
3、當(dāng)傳動(dòng)比一定,主動(dòng)齒輪尺寸相同時(shí),雙曲面從動(dòng)齒輪的直徑較小,有較大的離地間隙。
4、工作過(guò)程中,雙曲面齒輪副既存在沿齒高方向的側(cè)向滑動(dòng),又有沿齒長(zhǎng)方向的縱向滑動(dòng),這可以改善齒輪的磨合過(guò)程,使其具有更高的運(yùn)轉(zhuǎn)平穩(wěn)性。
雙曲面齒輪傳動(dòng)有如下缺點(diǎn):
1、長(zhǎng)方向的縱向滑動(dòng)使摩擦損失增加,降低了傳動(dòng)效率。
2、齒面間有大的壓力和摩擦功,使齒輪抗嚙合能力降低。
3、雙曲面主動(dòng)齒輪具有較大的軸向力,使其軸承負(fù)荷增大。
4、雙曲面齒輪必須采用可改善油膜強(qiáng)度和防刮傷添加劑的特種潤(rùn)滑油。
螺旋錐齒輪傳動(dòng)的主、從動(dòng)齒輪軸線垂直相交于一點(diǎn),齒輪并不同時(shí)在全長(zhǎng)上嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉(zhuǎn)向另一端。另外,由于輪齒端面重疊的影響,至少有兩對(duì)以上的輪齒同時(shí)捏合,螺旋錐齒輪能承受大的載荷,而且工作平穩(wěn),即使在高速運(yùn)轉(zhuǎn)時(shí)其噪聲和振動(dòng)也是很小的。本次設(shè)計(jì)采用螺旋錐齒輪。
2.3.3主減速器的減速形式
主減速器的減速形式分為單級(jí)減速、雙級(jí)減速、單級(jí)貫通、雙級(jí)貫通、主減速及輪邊減速等。減速形式的選擇與汽車(chē)的類(lèi)型及使用條件有關(guān),有時(shí)也與制造廠的產(chǎn)品系列及制造條件有關(guān),但它主要取決于由動(dòng)力性、經(jīng)濟(jì)性等整車(chē)性能所要求的主減速比io的大小及驅(qū)動(dòng)橋下的離地間隙、驅(qū)動(dòng)橋的數(shù)目及布置形式等。通常單極減速器用于主減速比io≤7.6的各種中小型汽車(chē)上
(a) 單級(jí)主減速器 (b) 雙級(jí)主減速器
圖2.2主減速器
如圖2.2(a)所示,單級(jí)減速驅(qū)動(dòng)車(chē)橋是驅(qū)動(dòng)橋中結(jié)構(gòu)最簡(jiǎn)單的一種,制造工藝較簡(jiǎn)單,成本較低,是驅(qū)動(dòng)橋的基本型,在貨車(chē)車(chē)上占有重要地位。目前貨車(chē)車(chē)發(fā)動(dòng)機(jī)向低速大扭矩發(fā)展的趨勢(shì)使得驅(qū)動(dòng)橋的傳動(dòng)比向小速比發(fā)展;隨著公路狀況的改善,特別是高速公路的迅猛發(fā)展,許多貨車(chē)使用條件對(duì)汽車(chē)通過(guò)性的要求降低,因此,產(chǎn)品不必像過(guò)去一樣,采用復(fù)雜的結(jié)構(gòu)提高其的通過(guò)性;與帶輪邊減速器的驅(qū)動(dòng)橋相比,由于產(chǎn)品結(jié)構(gòu)簡(jiǎn)化,單級(jí)減速驅(qū)動(dòng)橋機(jī)械傳動(dòng)效率提高,易損件減少,可靠性增加。
如圖2..2(b)所示,與單級(jí)主減速器相比,由于雙級(jí)主減速器由兩級(jí)齒輪減速組成,使其結(jié)構(gòu)復(fù)雜、質(zhì)量加大;主減速器的齒輪及軸承數(shù)量的增多和材料消耗及加工的工時(shí)增加,制造成本也顯著增加,只有在主減速比較大(7.6<)且采用單級(jí)主減速器不能滿足既定的主減速比和離地間隙等要求是才采用。通常僅用在裝在質(zhì)量10t以上的重型汽車(chē)上
本次設(shè)計(jì)貨車(chē)主減速比=6.14,所以采用單級(jí)主減速器。
2.3.4主減速器主從動(dòng)錐齒輪的支承形式及安裝方法
1、主減速器主動(dòng)錐齒輪的支承形式及安裝方式的選擇
現(xiàn)在汽車(chē)主減速器主動(dòng)錐齒輪的支承形式有如下兩種:
(1)懸臂式
懸臂式支承結(jié)構(gòu)如圖2.3所示,其特點(diǎn)是在錐齒輪大端一側(cè)采用較長(zhǎng)的軸徑,其上安裝兩個(gè)圓錐滾子軸承。為了減小懸臂長(zhǎng)度a和增加兩端的距離b,以改善支承剛度,應(yīng)使兩軸承圓錐滾子向外。懸臂式支承結(jié)構(gòu)簡(jiǎn)單,支承剛度較差,多用于傳遞轉(zhuǎn)鉅較小的轎車(chē)、輕型貨車(chē)的單級(jí)主減速器及許多雙級(jí)主減速器中。
圖2.3 錐齒輪懸臂式支承
(2)騎馬式
騎馬式支承結(jié)構(gòu)如圖2-4所示,其特點(diǎn)是在錐齒輪的兩端均有軸承支承,這樣可大大增加支承剛度,又使軸承負(fù)荷減小,齒輪嚙合條件改善,在需要傳遞較大轉(zhuǎn)矩情況下,最好采用騎馬式支承。
圖2.4 主動(dòng)錐齒輪騎馬式支承
采用騎馬式(跨置式)支承結(jié)構(gòu)時(shí),齒輪前、后兩端的軸頸均以軸承支承,故又稱(chēng)兩端支承式??缰檬街С惺怪С袆偠却鬄樵黾樱过X輪在載荷作用下的變形大為減小,約減小到懸臂式支承的1/30以下.而主動(dòng)錐齒輪后軸承的徑向負(fù)荷比懸臂式的要減小至1/5~1/7。齒輪承載能力較懸臂式可提高10%左右。跟據(jù)實(shí)際情況,所設(shè)計(jì)的為輕型貨車(chē)所以采用懸臂式支撐。
當(dāng)主動(dòng)錐齒輪安裝在圓錐滾子軸承上時(shí),為了減小懸臂長(zhǎng)度增加支撐間距離,應(yīng)使兩軸承的小端朝內(nèi)相向,大端朝外,這樣也便于結(jié)構(gòu)的布置、軸承預(yù)緊度的調(diào)整及軸承的潤(rùn)滑。
2、主減速器從動(dòng)錐齒輪的支承形式及安裝方式的選擇
從動(dòng)錐齒輪只有跨置式一種支撐形式如圖2.5所示,兩端支承多采用圓錐滾子軸承,安裝時(shí)應(yīng)使它們的圓錐滾子大端相向朝內(nèi),而小端相向朝外。為了防止從動(dòng)錐齒輪在軸向載荷作用下的偏移,圓錐滾子軸承應(yīng)用兩端的調(diào)整螺母調(diào)整。主減速器從動(dòng)錐齒輪采用無(wú)輻式結(jié)構(gòu)并用細(xì)牙螺釘以精度較高的緊配固定在差速器殼的凸緣上,從動(dòng)齒輪節(jié)圓直徑較大時(shí)采用螺栓和差速器殼固定在一起[6]。
圖2.5 從動(dòng)齒輪支撐形式
本次設(shè)計(jì)主動(dòng)錐齒輪采用懸臂式支撐(圓錐滾子軸承),從動(dòng)錐齒輪采用騎馬式支撐(圓錐滾子軸承)。
2.4 差速器結(jié)構(gòu)方案的確定
根據(jù)汽車(chē)行駛運(yùn)動(dòng)學(xué)的要求和實(shí)際的車(chē)輪、道路以及它們之間的相互聯(lián)系表明:汽車(chē)在行駛過(guò)程中左右車(chē)輪在同一時(shí)間內(nèi)所滾過(guò)的行程往往是有差別的。例如,拐彎時(shí)外側(cè)車(chē)輪行駛總要比內(nèi)側(cè)長(zhǎng)。另外,即使汽車(chē)作直線行駛,也會(huì)由于左右車(chē)輪在同一時(shí)間內(nèi)所滾過(guò)的路面垂向波形的不同,或由于左右車(chē)輪輪胎氣壓、輪胎負(fù)荷、胎面磨損程度的不同以及制造誤差等因素引起左右車(chē)輪外徑不同或滾動(dòng)半徑不相等而要求
車(chē)輪行程不等。在左右車(chē)輪行程不等的情況下,如果采用一根整體的驅(qū)動(dòng)車(chē)輪軸將動(dòng)力傳給左右車(chē)輪,則會(huì)由于左右車(chē)輪的轉(zhuǎn)速雖然相等而行程卻又不同的這一運(yùn)動(dòng)學(xué)上的矛盾,引起某一驅(qū)動(dòng)車(chē)輪產(chǎn)生滑轉(zhuǎn)或滑移。這不僅會(huì)是輪胎過(guò)早磨、無(wú)益地消耗功率和燃料及使驅(qū)動(dòng)車(chē)輪軸超載等,還會(huì)因?yàn)椴荒馨此蟮乃矔r(shí)中心轉(zhuǎn)向而使操縱性變壞。此外,由于車(chē)輪與路面間尤其在轉(zhuǎn)彎時(shí)有大的滑轉(zhuǎn)或滑移,易使汽車(chē)在轉(zhuǎn)向時(shí)失去抗側(cè)滑能力而使穩(wěn)定性變壞。為了消除由于左右車(chē)輪在運(yùn)動(dòng)學(xué)上的不協(xié)調(diào)而產(chǎn)生的這些弊病,汽車(chē)左右驅(qū)動(dòng)輪間都有差速器,后者保證了汽車(chē)驅(qū)動(dòng)橋兩側(cè)車(chē)輪在行程不等時(shí)具有以下不同速度旋轉(zhuǎn)的特性,從而滿足了汽車(chē)行駛運(yùn)動(dòng)學(xué)的要求。
差速器的結(jié)構(gòu)型式選擇,應(yīng)從所設(shè)計(jì)汽車(chē)的類(lèi)型及其使用條件出發(fā),以滿足該型汽車(chē)在給定的使用條件下的使用性能要求。
差速器的結(jié)構(gòu)型式有多種,大多數(shù)汽車(chē)都屬于公路運(yùn)輸車(chē)輛,對(duì)于在公路上和市區(qū)行駛的汽車(chē)來(lái)說(shuō),由于路面較好,各驅(qū)動(dòng)車(chē)輪與路面的附著系數(shù)變化很小,因此幾乎都采用了結(jié)構(gòu)簡(jiǎn)單、工作平穩(wěn)、制造方便、用于公路汽車(chē)也很可靠的普通對(duì)稱(chēng)式圓錐行星齒輪差速器,作為安裝在左、右驅(qū)動(dòng)車(chē)輪間的所謂輪間差速器使用;對(duì)于經(jīng)常行駛在泥濘、松軟土路或無(wú)路地區(qū)的越野汽車(chē)來(lái)說(shuō),為了防止因某一側(cè)驅(qū)動(dòng)車(chē)輪滑轉(zhuǎn)而陷車(chē),則可采用防滑差速器。后者又分為強(qiáng)制鎖止式和自然鎖止式兩類(lèi)。自鎖式差速器又有多種結(jié)構(gòu)式的高摩擦式和自由輪式的以及變傳動(dòng)比式的[7]。
本次設(shè)計(jì)選用:普通錐齒輪式差速器,因?yàn)樗Y(jié)構(gòu)簡(jiǎn)單,工作平穩(wěn)可靠,適用于本次設(shè)計(jì)的汽車(chē)驅(qū)動(dòng)橋。
2.5 半軸形式的確定
驅(qū)動(dòng)車(chē)輪的傳動(dòng)裝置置位于汽車(chē)傳動(dòng)系的末端,其功用是將轉(zhuǎn)矩由差速器半軸齒輪傳給驅(qū)動(dòng)車(chē)輪。其結(jié)夠型式與驅(qū)動(dòng)橋的結(jié)構(gòu)型式密切相關(guān),在斷開(kāi)式驅(qū)動(dòng)橋和轉(zhuǎn)向驅(qū)動(dòng)橋中,驅(qū)動(dòng)車(chē)輪的傳動(dòng)裝置包括半軸和萬(wàn)向接傳動(dòng)裝置且多采用等速萬(wàn)向節(jié)。在一般非斷開(kāi)式驅(qū)動(dòng)橋上,驅(qū)動(dòng)車(chē)輪的傳動(dòng)裝置就是半軸,這時(shí)半軸將差速器半鈾齒輪與輪轂連接起來(lái)。在裝有輪邊減速器的驅(qū)動(dòng)橋上,半軸將半軸齒輪與輪邊減速器的主動(dòng)齒輪連接起來(lái)。如圖2.5所示,根據(jù)半軸外端支撐形式分為半浮式,3/4浮式,全浮式。
(a)半浮式 (b)3/4浮式 (c)全浮式
圖2.5 半軸支撐形式
半浮式半軸以其靠近外端的軸頸直接支撐在置于橋殼外端內(nèi)孔中的軸承上,而端部則以具有圓錐面的軸頸及鍵與輪轂相固定。具有結(jié)構(gòu)簡(jiǎn)單、質(zhì)量小、尺寸緊湊、造價(jià)低廉等優(yōu)點(diǎn)。主要用于質(zhì)量較小,使用條件好,承載負(fù)荷也不大的轎車(chē)和輕型載貨汽車(chē)。
3/4浮式半軸的結(jié)構(gòu)特點(diǎn)是半軸外端僅有一個(gè)軸承并裝在驅(qū)動(dòng)橋殼半軸套管的端部,直接支撐著輪轂,而半軸則以其端部與輪轂想固定,因其側(cè)向力引起彎矩使軸承有歪斜的趨勢(shì),這將急劇降低軸承的壽命,所以未得到推廣。
全浮式半軸的外端和以?xún)蓚€(gè)軸承支撐于橋殼的半軸套管上的輪轂相聯(lián)接,由于其工作可靠,廣泛應(yīng)用于輕型及以上的各類(lèi)汽車(chē)上。
根據(jù)相關(guān)車(chē)型及設(shè)計(jì)要求,本設(shè)計(jì)采用全浮半軸。
2.6 橋殼形式的確定
橋殼的結(jié)構(gòu)型式大致分為可分式,組合式整體式三種。
1、可分式橋殼
可分式橋殼的整個(gè)橋殼由一個(gè)垂直接合面分為左右兩部分,每一部分均由一個(gè)鑄件殼體和一個(gè)壓入其外端的半軸套管組成。半軸套管與殼體用鉚釘聯(lián)接。在裝配主減速器及差速器后左右兩半橋殼是通過(guò)在中央接合面處的一圈螺栓聯(lián)成一個(gè)整體。其特點(diǎn)是橋殼制造工藝簡(jiǎn)單、主減速器軸承支承剛度好。但對(duì)主減速器的裝配、調(diào)整及維修都很不方便,橋殼的強(qiáng)度和剛度也比較低。過(guò)去這種所謂兩段可分式橋殼見(jiàn)于輕型汽車(chē),由于上述缺點(diǎn)現(xiàn)已很少采用。
2、組合式
組合式橋殼又稱(chēng)為支架式橋殼,對(duì)加工精度要求較高,剛度較差,通常用于微型汽車(chē)、轎車(chē)、輕型以下載貨汽車(chē)。
3、整體式橋殼
整體式橋殼的特點(diǎn)是將整個(gè)橋殼制成一個(gè)整體,橋殼猶如一整體的空心粱,其強(qiáng)度及剛度都比較好。且橋殼與主減速器殼分作兩體,主減速器齒輪及差速器均裝在獨(dú)立的主減速殼里,構(gòu)成單獨(dú)的總成,調(diào)整好以后再由橋殼中部前面裝入橋殼內(nèi),并與橋殼用螺栓固定在一起。使主減速器和差速器的拆裝、調(diào)整、維修、保養(yǎng)等都十分方便。
整體式橋殼按其制造工藝的不同又可分為鑄造整體式、鋼板沖壓焊接式和鋼管擴(kuò)張成形式三種。
鋼板沖壓焊接整體式橋殼是由鋼板沖壓焊接成的橋殼主體、兩端再焊上帶凸緣的半軸套管及鋼板彈簧座組成。其制造工藝簡(jiǎn)單、材料利用率高、廢品率低生產(chǎn)率高極、及制造成本低等優(yōu)點(diǎn)外,還有足夠的強(qiáng)度和剛度,特別是其質(zhì)量小,但是比有些鑄造橋殼可靠,由于鋼板沖壓焊接整體式橋殼有一系列優(yōu)點(diǎn),近年來(lái)不但應(yīng)用于轎車(chē),輕型貨車(chē)、中型載貨車(chē)上得到了廣泛的應(yīng)用。本次設(shè)計(jì)驅(qū)動(dòng)橋殼就選用鋼板沖壓焊接式整體橋殼。
2.7 本章小結(jié)
本章首先確定了主減速比,用以確定其它參數(shù)。對(duì)主減速器型式確定中主要從主減速器齒輪的類(lèi)型、主減速器的減速形式、主減速器主動(dòng)錐齒輪的支承形式及安裝方式的選擇、從動(dòng)錐齒輪的支承方式和安裝方式的選擇,從而確定逐步給出驅(qū)動(dòng)橋各個(gè)總成的基本結(jié)構(gòu),分析了驅(qū)動(dòng)橋各總成結(jié)構(gòu)組成?;敬_定了驅(qū)動(dòng)橋四個(gè)組成部分主減速器、差速器、半軸、橋殼的結(jié)構(gòu)。
第3章 主減速器設(shè)計(jì)
3.1概述
主減速器是汽車(chē)傳動(dòng)系中減小轉(zhuǎn)速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒輪帶動(dòng)齒數(shù)多的錐齒輪。對(duì)發(fā)動(dòng)機(jī)縱置的汽車(chē),其主減速器還利用錐齒輪傳動(dòng)以改變動(dòng)力方向。由于汽車(chē)在各種道路上行使時(shí),其驅(qū)動(dòng)輪上要求必須具有一定的驅(qū)動(dòng)力矩和轉(zhuǎn)速,在動(dòng)力向左右驅(qū)動(dòng)輪分流的差速器之前設(shè)置一個(gè)主減速器后,便可使主減速器前面的傳動(dòng)部件如變速器、萬(wàn)向傳動(dòng)裝置等所傳遞的扭矩減小,從而可使其尺寸及質(zhì)量減小、操縱省力。
3.2主減速器齒輪參數(shù)的選擇與強(qiáng)度計(jì)算
3.2.1主減速器齒輪計(jì)算載荷的確定
1、按發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩和最低擋傳動(dòng)比確定從動(dòng)錐齒輪的計(jì)算轉(zhuǎn)矩
/n (3.1)
式中:——發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩201;
——由發(fā)動(dòng)機(jī)到所計(jì)算的主減速器從動(dòng)齒輪之間的傳動(dòng)系最低檔傳動(dòng)比
==6.14×6.01=36.9014
變速器傳動(dòng)比=6.01;
——上述傳動(dòng)部分的效率,取=0.9;
——超載系數(shù),取=1.0;
n——驅(qū)動(dòng)橋數(shù)目1。
=201 36.9014 1 0.9/1=6675.46
2、按驅(qū)動(dòng)輪在良好路面上打滑轉(zhuǎn)矩確定從動(dòng)錐齒輪的計(jì)算轉(zhuǎn)矩
(3.2)
式中: ——汽車(chē)滿載時(shí)驅(qū)動(dòng)橋給水平地面的最大負(fù)荷,N;但后橋來(lái)說(shuō)還應(yīng)考慮到汽車(chē)加速時(shí)負(fù)腷增大量,可初?。?
=×9.8=4100×9.8=40180N;
——輪胎對(duì)地面的附著系數(shù),對(duì)于安裝一般輪胎的公路用汽車(chē),取=0.85;
對(duì)于越野汽車(chē),取=1.0;
——車(chē)輪滾動(dòng)半徑,0.405m;
——分別為由所計(jì)算的主減速器從動(dòng)齒輪到驅(qū)動(dòng)輪之間的傳動(dòng)效率和傳動(dòng)比,分別取0.96和1。
==14408.29
通常是將發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩配以傳動(dòng)系最低檔傳動(dòng)比時(shí)和驅(qū)動(dòng)車(chē)輪打滑時(shí)這兩種情況下作用于主減速器從動(dòng)齒輪上的轉(zhuǎn)矩()的較小者,作為載貨汽車(chē)計(jì)算中用以驗(yàn)算主減速器從動(dòng)齒輪最大應(yīng)力的計(jì)算載荷。
由式(3.1),式(3.2)求得的計(jì)算載荷,是最大轉(zhuǎn)矩而不是正常持續(xù)轉(zhuǎn)矩,不能用它作為疲勞損壞依據(jù)。汽車(chē)的類(lèi)型很多,行駛工況又非常復(fù)雜,轎車(chē)一般在高速輕載條件下工作,而礦用車(chē)和越野車(chē)在高負(fù)荷低車(chē)速條件下工作,對(duì)于公路車(chē)輛來(lái)說(shuō),使用條件較非公路用車(chē)穩(wěn)定,其正常持續(xù)轉(zhuǎn)矩是根據(jù)所謂平均牽引力的值來(lái)確定的,即主減速器的平均計(jì)算轉(zhuǎn)矩。
3、按汽車(chē)日常行駛平均轉(zhuǎn)矩確定從動(dòng)錐齒輪的計(jì)算轉(zhuǎn)矩
= (3.3)
式中:——汽車(chē)滿載總重N, =6000×9.8=58800N;
——所牽引的掛車(chē)滿載總重,N,僅用于牽引車(chē)取=0;
——道路滾動(dòng)阻力系數(shù),初取 =0.015;
——汽車(chē)正常使用時(shí)的平均爬坡能力系數(shù)。初取=0.05;
——汽車(chē)性能系數(shù)
(3.4)
當(dāng) =57.04>16時(shí),取=0。
===1612.4
3.2.2 主減速器齒輪參數(shù)的選擇
1、 主、從動(dòng)齒數(shù)的選擇
選擇主、從動(dòng)錐齒輪齒數(shù)時(shí)應(yīng)考慮如下因素:為了磨合均勻,,之間應(yīng)避免有公約數(shù);為了得到理想的齒面重合度和高的輪齒彎曲強(qiáng)度,主、從動(dòng)齒輪齒數(shù)和應(yīng)不小于40;為了嚙合平穩(wěn),噪聲小和具有高的疲勞強(qiáng)度對(duì)于商用車(chē)一般不小于6;主傳動(dòng)比較大時(shí),盡量取得小一些,以便得到滿意的離地間隙。對(duì)于不同的主傳動(dòng)比,和應(yīng)有適宜的搭配。
主減速器的傳動(dòng)比為6.14,初定主動(dòng)齒輪齒數(shù)z1=7,從動(dòng)齒輪齒數(shù)z2=43。
2、從動(dòng)錐齒輪節(jié)圓直徑及端面模數(shù)的選擇
根據(jù)從動(dòng)錐齒輪的計(jì)算轉(zhuǎn)矩(見(jiàn)式3.1和式3.2并取兩式計(jì)算結(jié)果中較小的一個(gè)作為計(jì)算依據(jù),按經(jīng)驗(yàn)公式選出:
(3.5) 式中:——直徑系數(shù),取=13~16;
——計(jì)算轉(zhuǎn)矩,,取,較小的。取=6675.46。
計(jì)算得,=244.78~301.26mm,初取=300mm。
選定后,可按式算出從動(dòng)齒輪大端模數(shù),并用下式校核
(3.6)
式中:——模數(shù)系數(shù),取=0.3~0.4;
——計(jì)算轉(zhuǎn)矩,,取。
==5.67~7.5
由GB/T12368-1990,取=7mm,滿足校核。
所以有:=49mm =301mm。
3、螺旋錐齒輪齒面寬的選擇
通常推薦圓錐齒輪從動(dòng)齒輪的齒寬F為其節(jié)錐距的0.3倍。對(duì)于汽車(chē)工業(yè),主減速器螺旋錐齒輪面寬度推薦采用:
F=0.155=46.66mm,可初取F=50mm。
一般習(xí)慣使錐齒輪的小齒輪齒面寬比大齒輪稍大,使其在大齒輪齒面兩端都超出一些,通常小齒輪的齒面加大10%較為合適,在此取=55。
4、螺旋錐齒輪螺旋方向
主、從動(dòng)錐齒輪的螺旋方向是相反的。螺旋方向與錐齒輪的旋轉(zhuǎn)方向影響其所受的軸向力的方向。當(dāng)變速器掛前進(jìn)擋時(shí),應(yīng)使主動(dòng)錐齒輪的軸向力離開(kāi)錐頂方向。這樣可使主、從動(dòng)齒輪有分離的趨勢(shì),防止輪齒因卡死而損壞。
所以主動(dòng)錐齒輪選擇為左旋,從錐頂看為逆時(shí)針運(yùn)動(dòng),這樣從動(dòng)錐齒輪為右旋,從錐頂看為順時(shí)針,驅(qū)動(dòng)汽車(chē)前進(jìn)。
5、 旋角的選擇
螺旋角是在節(jié)錐表面的展開(kāi)圖上定義的,齒面寬中點(diǎn)處為該齒輪的名義螺旋角。螺旋角應(yīng)足夠大以使1.25。因越大傳動(dòng)就越干穩(wěn),噪聲就越低。在一般機(jī)械制造用的標(biāo)準(zhǔn)制中,螺旋角推薦用35°。
6、法向壓力角a的選擇
壓力角可以提高齒輪的強(qiáng)度,減少齒輪不產(chǎn)生根切的最小齒數(shù),但對(duì)于尺寸小的齒輪,大壓力角易使齒頂變尖及刀尖寬度過(guò)小,并使齒輪的端面重疊系數(shù)下降,一般對(duì)于“格里森”制主減速器螺旋錐齒輪來(lái)說(shuō),載貨汽車(chē)可選用20°壓力角[8]。
7、主從動(dòng)錐齒輪幾何計(jì)算
計(jì)算結(jié)果如表3.1
表3.1 主減速器齒輪的幾何尺寸計(jì)算用表
序號(hào)
項(xiàng) 目
計(jì) 算 公 式
計(jì) 算 結(jié) 果
1
主動(dòng)齒輪齒數(shù)
7
2
從動(dòng)齒輪齒數(shù)
43
3
模數(shù)
7
4
齒面寬
=55mm
=50mm
5
工作齒高
10.92mm
6
全齒高
=12.131mm
7
法向壓力角
=20°
8
軸交角
=90°
9
節(jié)圓直徑
=
49mm
=301mm
10
節(jié)錐角
arctan
=90°-
=9.246°
=80.753°
11
節(jié)錐距
A==
A=152.486mm
12
周節(jié)
t=3.1416
t=21.99mm
13
齒頂高
=9.03mm
=1.89mm
14
齒根高
=
=3.101mm
=10.241mm
15
徑向間隙
c=
c=1.211mm
16
齒根角
=1.165°
=3.842°
17
面錐角
;
=13.088°
=81.918°
18
根錐角
=
=
=8.081°
=76.911°
19
外圓直徑
=
=68.825mm
=301.607mm
20
節(jié)錐頂點(diǎn)止齒輪外緣距離
=149.049mm
=22.634mm
21
理論弧齒厚
=16.27mm
=5.72mm
22
齒側(cè)間隙
B=0.178~0.228
0.2mm
23
螺旋角
=35°
3.2.3螺旋錐齒輪的強(qiáng)度計(jì)算
1、損壞形式及壽命
在完成主減速器齒輪的幾何計(jì)算之后,應(yīng)對(duì)其強(qiáng)度進(jìn)行計(jì)算,以保證其有足夠的強(qiáng)度和壽命以及安全可靠性地工作。在進(jìn)行強(qiáng)度計(jì)算之前應(yīng)首先了解齒輪的破壞形式及其影響因素。
齒輪的損壞形式常見(jiàn)的有輪齒折斷、齒面點(diǎn)蝕及剝落、齒面膠合、齒面磨損等。它們的主要特點(diǎn)及影響因素分述如下:
(1)輪齒折斷
主要分為疲勞折斷及由于彎曲強(qiáng)度不足而引起的過(guò)載折斷。折斷多數(shù)從齒根開(kāi)始,因?yàn)辇X根處齒輪的彎曲應(yīng)力最大。
①疲勞折斷:在長(zhǎng)時(shí)間較大的交變載荷作用下,齒輪根部經(jīng)受交變的彎曲應(yīng)力。如果最高應(yīng)力點(diǎn)的應(yīng)力超過(guò)材料的耐久極限,則首先在齒根處產(chǎn)生初始的裂紋。隨著載荷循環(huán)次數(shù)的增加,裂紋不斷擴(kuò)大,最后導(dǎo)致輪齒部分地或整個(gè)地?cái)嗟?。在開(kāi)始出現(xiàn)裂紋處和突然斷掉前存在裂紋處,在載荷作用下由于裂紋斷面間的相互摩擦,形成了一個(gè)光亮的端面區(qū)域,這是疲勞折斷的特征,其余斷面由于是突然形成的故為粗糙的新斷面。
②過(guò)載折斷:由于設(shè)計(jì)不當(dāng)或齒輪的材料及熱處理不符合要求,或由于偶然性的峰值載荷的沖擊,使載荷超過(guò)了齒輪彎曲強(qiáng)度所允許的范圍,而引起輪齒的一次性突然折斷。
為了防止輪齒折斷,應(yīng)使其具有足夠的彎曲強(qiáng)度,并選擇適當(dāng)?shù)哪?shù)、壓力角、齒高及切向修正量、良好的齒輪材料及保證熱處理質(zhì)量等。齒根圓角盡可能加大,根部及齒面要光潔。
(2)齒面的點(diǎn)蝕及剝落
齒面的疲勞點(diǎn)蝕及剝落是齒輪的主要破壞形式之一,約占損壞報(bào)廢齒輪的70%以上。它主要由于表面接觸強(qiáng)度不足而引起的。
①點(diǎn)蝕:是輪齒表面多次高壓接觸而引起的表面疲勞的結(jié)果。由于接觸區(qū)產(chǎn)生很大的表面接觸應(yīng)力,常常在節(jié)點(diǎn)附近,特別在小齒輪節(jié)圓以下的齒根區(qū)域內(nèi)開(kāi)始,形成極小的齒面裂紋進(jìn)而發(fā)展成淺凹坑,形成這種凹坑或麻點(diǎn)的現(xiàn)象就稱(chēng)為點(diǎn)蝕。一般首先產(chǎn)生在幾個(gè)齒上。在齒輪繼續(xù)工作時(shí),則擴(kuò)大凹坑的尺寸及數(shù)目,甚至?xí)饾u使齒面成塊剝落,引起噪音和較大的動(dòng)載荷。在最后階段輪齒迅速損壞或折斷。減小齒面壓力和提高潤(rùn)滑效果是提高抗點(diǎn)蝕的有效方法,為此可增大節(jié)圓直徑及增大螺旋角,使齒面的曲率半徑增大,減小其接觸應(yīng)力。在允許的范圍內(nèi)適當(dāng)加大齒面寬也是一種辦法。
②齒面剝落:發(fā)生在滲碳等表面淬硬的齒面上,形成沿齒面寬方向分布的較點(diǎn)蝕更深的凹坑。凹坑壁從齒表面陡直地陷下。造成齒面剝落的主要原因是表面層強(qiáng)度不夠。例如滲碳齒輪表面層太薄、心部硬度不夠等都會(huì)引起齒面剝落。當(dāng)滲碳齒輪熱處理不當(dāng)使?jié)B碳層中含碳濃度的梯度太陡時(shí),則一部分滲碳層齒面形成的硬皮也將從齒輪心部剝落下來(lái)。
(3)齒面膠合
在高壓和高速滑摩引起的局部高溫的共同作用下,或潤(rùn)滑冷卻不良、油膜破壞形成金屬齒表面的直接摩擦?xí)r,因高溫、高壓而將金屬粘結(jié)在一起后又撕下來(lái)所造成的表面損壞現(xiàn)象和擦傷現(xiàn)象稱(chēng)為膠合。它多出現(xiàn)在齒頂附近,在與節(jié)錐齒線的垂直方向產(chǎn)生撕裂或擦傷痕跡。輪齒的膠合強(qiáng)度是按齒面接觸點(diǎn)的臨界溫度而定,減小膠合現(xiàn)象的方法是改善潤(rùn)滑條件等。
(4)齒面磨損
這是輪齒齒面間相互滑動(dòng)、研磨或劃痕所造成的損壞現(xiàn)象。規(guī)定范圍內(nèi)的正常磨損是允許的。研磨磨損是由于齒輪傳動(dòng)中的剝落顆粒、裝配中帶入的雜物,如未清除的型砂、氧化皮等以及油中不潔物所造成的不正常磨損,應(yīng)予避免。汽車(chē)主減速器及差速器齒輪在新車(chē)跑合期及長(zhǎng)期使用中按規(guī)定里程更換規(guī)定的潤(rùn)滑油并進(jìn)行清洗是防止不正常磨損的有效方法。
汽車(chē)驅(qū)動(dòng)橋的齒輪,承受的是交變負(fù)荷,其主要損壞形式是疲勞。其表現(xiàn)是齒根疲勞折斷和由表面點(diǎn)蝕引起的剝落。在要求使用壽命為20萬(wàn)千米或以上時(shí),其循環(huán)次數(shù)均以超過(guò)材料的耐久疲勞次數(shù)。因此,驅(qū)動(dòng)橋齒輪的許用彎曲應(yīng)力不超過(guò)210.9N/mm.表3.2給出了汽車(chē)驅(qū)動(dòng)橋齒輪的許用應(yīng)力數(shù)值。
表3.2汽車(chē)驅(qū)動(dòng)橋齒輪的許用應(yīng)力 ( N/mm)
計(jì)算載荷
主減速器齒輪的許用彎曲應(yīng)力
主減速器齒輪的許用接觸應(yīng)力
差速器齒輪的許用彎曲應(yīng)力
,中的較小者
700
2800
980
210.9
1750
210.9
實(shí)踐表明,主減速器齒輪的疲勞壽命主要與最大持續(xù)載荷(即平均計(jì)算轉(zhuǎn)矩)有關(guān),而與汽車(chē)預(yù)期壽命期間出現(xiàn)的峰值載荷關(guān)系不大。汽車(chē)驅(qū)動(dòng)橋的最大輸出轉(zhuǎn)矩和最大附著轉(zhuǎn)矩并不是使用中的持續(xù)載荷,強(qiáng)度計(jì)算時(shí)只能用它來(lái)驗(yàn)算最大應(yīng)力,不能作為疲勞損壞的依據(jù)[9]。
2、主減速器螺旋錐齒輪的強(qiáng)度計(jì)算
(1)單位齒長(zhǎng)上的圓周力
在汽車(chē)主減速器齒輪的表面耐磨性,常常用其在輪齒上的假定單位壓力即單位齒長(zhǎng)圓周力來(lái)估算,即
(3.7)
式中:——單位齒長(zhǎng)上的圓周力,N/mm;
P——作用在齒輪上的圓周力,N,按發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩和最大附著力矩兩種載荷工況進(jìn)行計(jì)算。
按發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩計(jì)算時(shí):
(3.8)
式中:——發(fā)動(dòng)機(jī)輸出的最大轉(zhuǎn)矩,在此取201;
——變速器的傳動(dòng)比;
——主動(dòng)齒輪節(jié)圓直徑,在此取49mm.;
按上式計(jì)算一檔時(shí): N/mm
直接檔時(shí): N/m。
表3.3 許用單位齒長(zhǎng)上的圓周力 (N/mm)
類(lèi)別
檔位
一檔
二檔
直接檔
轎車(chē)
893
536
321
載貨汽車(chē)
1429
250
公共汽車(chē)
982
214
牽引汽車(chē)
536
250
按最大附著力矩計(jì)算時(shí):
(3.9)
式中:——汽車(chē)滿載時(shí)一個(gè)驅(qū)動(dòng)橋給水平地面的最大負(fù)荷,對(duì)于后驅(qū)動(dòng)橋還應(yīng)考慮汽車(chē)最大加速時(shí)的負(fù)荷增加量,在此取40180N;
——輪胎與地面的附著系數(shù),在此取0.85;
——輪胎的滾動(dòng)半徑,在此取0.405m;
按上式=1838.13 N/mm。
雖然附著力矩產(chǎn)生的p很大,但由于發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩的限制p最大只有986.13 N/mm可知,校核成功。
(2)輪齒的彎曲強(qiáng)度計(jì)算
汽車(chē)主減速器螺旋錐齒輪輪齒的計(jì)算彎曲應(yīng)力為
(3.10)
式中:——齒輪計(jì)算轉(zhuǎn)矩,對(duì)從動(dòng)齒輪,取,較小的者即=6675.46和=1612.4來(lái)計(jì)算;對(duì)主動(dòng)齒輪應(yīng)分別除以傳動(dòng)效率和傳動(dòng)比得=1132.51,=273.54;
——超載系數(shù),1.0;
——尺寸系數(shù)==0.7245;
——載荷分配系數(shù)取=1;
——質(zhì)量系數(shù),對(duì)于汽車(chē)驅(qū)動(dòng)橋齒輪,檔齒輪接觸良好、節(jié)及徑向跳動(dòng)精度高時(shí),取1;
J——計(jì)算彎曲應(yīng)力用的綜合系數(shù),見(jiàn)圖3.1,=0.242,=0.181。
相嚙合齒輪的齒數(shù)
求
綜
合
系
數(shù)
J
的
齒
輪
齒
數(shù)
圖3.1 彎曲計(jì)算用綜合系數(shù)J
按計(jì)算: 主動(dòng)錐齒輪彎曲應(yīng)力=359.45 N/mm<700 N/mm
從動(dòng)錐齒輪彎曲應(yīng)力=507.27 N/mm<700 N/mm
按計(jì)算:主動(dòng)錐齒輪彎曲應(yīng)力=116.08 N/mm<210.9 N/mm
從動(dòng)錐齒輪彎曲應(yīng)力=122.53 N/mm<210.9N/mm
綜上所述由表3.2,計(jì)算的齒輪滿足彎曲強(qiáng)度的要求。
(3)輪齒的接觸強(qiáng)度計(jì)算
螺旋錐齒輪齒面的計(jì)算接觸應(yīng)力(N/mm)為:
(3.11)
式中:——主動(dòng)齒輪計(jì)算轉(zhuǎn)矩分別為=1132.51,=273.54;
——材料的彈性系數(shù),對(duì)于鋼制齒輪副取232.6;
——主動(dòng)齒輪節(jié)圓直徑,49mm;
,,同3.10;
——尺寸系數(shù),=1;
——表面質(zhì)量系數(shù),對(duì)于制造精確的齒輪可取1;
F——齒面寬,取齒輪副中較小值即從動(dòng)齒輪齒寬50mm;
J—— 計(jì)算應(yīng)力的綜合系數(shù),J =0.135,見(jiàn)圖3.2所示。
小齒輪齒數(shù)
接觸強(qiáng)度計(jì)算用J
大齒輪齒數(shù)
圖3.2 接觸強(qiáng)度計(jì)算綜合系數(shù)J
按計(jì)算,=2749.78<2800 N/mm
按計(jì)算,=1351.41<1750 N/mm
由表3.2輪齒齒面接觸強(qiáng)度滿足校核。
(4)主動(dòng)齒輪軸的彎矩
如圖3.3所示為主動(dòng)齒輪受力及彎矩圖。
圖3.3 主動(dòng)齒輪軸彎矩圖
危險(xiǎn)截面上的合成彎曲應(yīng)力為 :
(3.12)
式中: ——彎曲截面系數(shù),,D=35mm;
——主動(dòng)齒輪