計(jì)算器外殼注塑模具設(shè)計(jì)
計(jì)算器外殼注塑模具設(shè)計(jì),計(jì)算器,外殼,注塑,模具設(shè)計(jì)
第 11 頁 共 11 頁
桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)用紙
1 模具的歷史發(fā)展
David O.Kazmer.Injection mold design engineering.
Hanser Gardner Publications,2007.
模具的出現(xiàn)可以追溯到幾千年前的陶器和青銅器鑄造,但其大規(guī)模使用卻是隨著現(xiàn)代工業(yè)的掘起而發(fā)展起來的。
19世紀(jì),隨著軍火工業(yè)(槍炮的彈殼)、鐘表工業(yè)、無線電工業(yè)的發(fā)展,沖模得到廣泛使用。二次大戰(zhàn)后,隨著世界經(jīng)濟(jì)的飛速發(fā)展,它又成了大量生產(chǎn)家用電器、汽車、電子儀器、照相機(jī)、鐘表等零件的最佳方式。從世界范圍看,當(dāng)時(shí)美國的沖壓技術(shù)走在前列——許多模具先進(jìn)技術(shù),如簡易模具、高效率模具、高壽命模具和沖壓自動(dòng)化技術(shù)等,其大多起源于美國;而瑞士的精沖、德國的冷擠壓技術(shù)、蘇聯(lián)對塑性加工的研究也處于世界先進(jìn)行列。50年代,模具行業(yè)工作重點(diǎn)是根據(jù)用戶的要求,制作能滿足產(chǎn)品要求的模具。模具設(shè)計(jì)多憑經(jīng)驗(yàn),參考已有圖紙和感性認(rèn)識,對所設(shè)計(jì)模具零件的機(jī)能缺乏真切了解。從1955年到1965年,是沖壓工業(yè)的探索和開發(fā)時(shí)代——對模具主要零部件的機(jī)能和受力狀態(tài)進(jìn)行了數(shù)學(xué)分橋,并把這些知識不斷應(yīng)用于現(xiàn)場實(shí)際,使得沖壓技術(shù)在各方面有飛躍的發(fā)展。其結(jié)果是總結(jié)出了模具的設(shè)計(jì)原則,并使得壓力機(jī)械、沖壓材料、加工方法、模具結(jié)構(gòu)、模具材料、模具制造方法、自動(dòng)化裝置等領(lǐng)域更新?lián)Q代,并向?qū)嵱没姆较蚯斑M(jìn),從而使沖壓加工進(jìn)入生產(chǎn)優(yōu)良產(chǎn)品的第一階段。
進(jìn)入70年代,模具進(jìn)入高速化、機(jī)械化、精密化、安全化發(fā)展的第二階段。在這個(gè)過程中不斷涌現(xiàn)各種高效率、高壽命、高精度、多功能的自動(dòng)化模具。其代表是多個(gè)工位的級進(jìn)模和十幾個(gè)工位的多工位傳遞模。在此基礎(chǔ)上又發(fā)展出既有連續(xù)沖壓工位又有多滑塊成形工位的壓力機(jī)—彎曲機(jī)。在此期間,日本站到了世界最前列——其模具加工精度進(jìn)入了微米級,模具壽命,合金鋼制造的模具達(dá)到了幾千萬次,硬質(zhì)合金鋼制造的模具達(dá)到了幾億次。在沖壓模具中,每分鐘沖壓次數(shù),小型壓力機(jī)通常為200至300次,最高為1200次至1500次。在此期間,為了適應(yīng)產(chǎn)品更新快、用期短(如汽車改型、玩具翻新等)的需要,各種經(jīng)濟(jì)型模具,如鋅鉻合金模具、聚氨酯橡膠模具、鋼皮沖模等也得到了很大發(fā)展。
從70年代中期至今可以說是計(jì)算機(jī)輔助設(shè)計(jì)、輔助制造技術(shù)不斷發(fā)展的時(shí)代。隨著模具加工精度與復(fù)雜性不斷提高,生產(chǎn)周期不斷加快,模具業(yè)對設(shè)備和人員素質(zhì)的要求也不斷提高。依靠普通加工設(shè)備,憑經(jīng)驗(yàn)和手藝越來越不能滿足模具生產(chǎn)的需要。90年代以來,機(jī)械技術(shù)和電子技術(shù)緊密結(jié)合,發(fā)展了NC機(jī)床,如數(shù)控線切割機(jī)床、數(shù)控電火花機(jī)床、數(shù)控銑床、數(shù)控坐標(biāo)磨床等。進(jìn)而出現(xiàn)了采用電子計(jì)算機(jī)自動(dòng)編程、控制的CNC機(jī)床,提高了數(shù)控機(jī)床的使用效率和范圍。近年來又發(fā)展出由一臺計(jì)算機(jī)以分時(shí)的方式直接管理和控制一群數(shù)控機(jī)床的NNC系統(tǒng)。
隨著計(jì)算機(jī)技術(shù)的發(fā)展,計(jì)算機(jī)也逐步進(jìn)入模具生產(chǎn)的各個(gè)領(lǐng)域,包括設(shè)計(jì)、制造、管理等。國際生產(chǎn)研究協(xié)會(huì)預(yù)測,到2000年,作為設(shè)計(jì)和制造之間聯(lián)系手段的圖紙將失去其主要作用。模具自動(dòng)設(shè)計(jì)的最根本點(diǎn)是必須確立模具零件標(biāo)準(zhǔn)及設(shè)計(jì)標(biāo)準(zhǔn)。要擺脫過去以人的思考判斷和實(shí)際經(jīng)驗(yàn)為中心所組成的設(shè)計(jì)方法,就必須把過去的經(jīng)驗(yàn)和思考方法,進(jìn)行系列化、數(shù)值化、數(shù)式化,作為設(shè)計(jì)準(zhǔn)則儲(chǔ)存到計(jì)算機(jī)中。因?yàn)槟>邩?gòu)成元件也干差萬別,要搞出一個(gè)能適應(yīng)各種零件的設(shè)計(jì)軟件幾乎不可能。但是有些產(chǎn)品的零件形狀變化不大,模具結(jié)構(gòu)有一定的規(guī)律,可總結(jié)歸納,為自動(dòng)設(shè)計(jì)提供軟件。如日本某公司的CDM系統(tǒng)用于級進(jìn)模設(shè)計(jì)與制造,其中包括零件圖形輸入、毛坯展開、條料排樣、確定模板尺寸和標(biāo)準(zhǔn)、繪制裝配圖和零件圖、輸出NC程序(為數(shù)控加工中心和線切割編程)等,所用時(shí)間由手工的20%、工時(shí)減少到35小時(shí);從80年代初日本就將三維的CAD/CAM系統(tǒng)用于汽車覆蓋件模具。目前,在實(shí)體件的掃描輸入,圖線和數(shù)據(jù)輸入,幾何造形、顯示、繪圖、標(biāo)注以及對數(shù)據(jù)的自動(dòng)編程,產(chǎn)生效控機(jī)床控制系統(tǒng)的后置處理文件等方面已達(dá)到較高水平;計(jì)算機(jī)仿真(CAE)技術(shù)也取得了一定成果。在高層次上,CAD/CAM/CAE集成的,即數(shù)據(jù)是統(tǒng)一的,可以互相直接傳輸信息.實(shí)現(xiàn)網(wǎng)絡(luò)化。目前.國外僅有少數(shù)廠家能夠做到。
2 沖壓
沖壓是通過模具使板材產(chǎn)生塑性變形而獲得成品零件的一種成形工藝方法。由于沖壓通常在冷態(tài)下進(jìn)行,因此也稱冷沖壓。只有當(dāng)板材厚度超過8-100毫米時(shí),才采用熱沖壓。沖壓加工的原材料一般為板材或帶材,故也稱板材沖壓。某些非金屬板材(如膠木板、云母片、石棉、皮革等)亦可采用沖壓成形工藝進(jìn)行加工。
沖壓廣泛應(yīng)用于金屬制品各行業(yè)中,尤其在汽車、儀表、軍工、家用電器等工業(yè)中占有極其重要的地位。
沖壓成形需研究工藝、設(shè)備和模具三類基本問題。
板材沖壓具有下列特點(diǎn):
(1)材料利用率高;
(2)可加工薄壁、形狀復(fù)雜的零件;
(3)沖壓件在形狀和尺寸精度方面的互換性好;
(4)能獲得質(zhì)量輕而強(qiáng)度高、剛性好的零件;
(5)生產(chǎn)率高,操作簡單,容易實(shí)現(xiàn)機(jī)械化和自動(dòng)化;
沖壓模具制造成本高,因此適合于大批量生產(chǎn)。對于小批量、多品種生產(chǎn)常采用簡易沖模,同時(shí)引進(jìn)沖壓加工中心等新型設(shè)備,以滿足市場求新求變的需求。
板材沖壓常用的金屬材料有低碳鋼、銅、鋁、鎂合金及高塑性的合金鋼等。如前所述,材料形狀有板材和帶材。
沖壓生產(chǎn)設(shè)備有剪床和沖床。剪床是用來將板材剪切成具有一定寬度的條料,以供后續(xù)沖壓工序使用,沖床可用于剪切及成形。
生產(chǎn)實(shí)踐中所采用的沖壓成形工藝方法有很多,具有多種形式和名稱,但其塑性變形本質(zhì)是相同的。沖壓成形具有如下幾個(gè)非常突出的特點(diǎn)。
(1)垂直于板面方向的單位面積上的壓力,其數(shù)值不大便足以在板面方向上使板材產(chǎn)生塑性變形。由于垂直于板面方向上的單位面積上壓力的數(shù)值遠(yuǎn)小于板面方向上的內(nèi)應(yīng)力,所以大多數(shù)的沖壓變形都可以近似地當(dāng)作平面應(yīng)力狀態(tài)來處理,使其變形力學(xué)的分析和工藝參數(shù)的計(jì)算等工作都得到很大的簡化。
(2)由于沖壓成形用的板材毛坯的相對厚度很小,在壓應(yīng)力作用下的抗失穩(wěn)能力也很差,所以在沒有抗失穩(wěn)裝置(如壓邊圈等)的條件下,很難在自由狀態(tài)下順利地完成沖壓成形過程。因此,以拉應(yīng)力作用為主的伸長類沖壓成形過程,多于以壓應(yīng)力作用為主的壓縮類成形過程。
(3)沖壓成形時(shí),板材毛坯內(nèi)應(yīng)力的數(shù)值等于或小于材料的屈服應(yīng)力。在這一點(diǎn)上,沖壓成形與體積成形的差別很大。因此,在沖壓成形時(shí)變形區(qū)應(yīng)力狀態(tài)中的靜水壓力成分對成形極限與變形抗力的影響,已失去其在體積成形時(shí)的重要程度,有些情況下,甚至可以完全不予考慮,即使有必要考慮時(shí),其處理方法也不相同。
(4)在沖壓成形時(shí),模具對板材毛坯作用力所形成的約束作用較輕,不像體積成形(如模鍛等)是靠與制件形狀完全相同的型腔對毛坯進(jìn)行全面接觸而實(shí)現(xiàn)的強(qiáng)制成形。在沖壓成形中,大多數(shù)情況下,板材毛坯都有某種程度的自由度,常常是只有一個(gè)表面與模具接觸,甚至有時(shí)存在板材兩側(cè)表面都不與模具接觸的變形部分。在這種情況下,這部分毛坯的變形是靠模具對其相鄰部分施加的外力實(shí)現(xiàn)其控制作用的。例如,球面和錐面零件成形時(shí)的懸空部分和管坯端部的卷邊成形等都屬這種情況。
由于沖壓成形具有上述一些變形與力學(xué)方面的特點(diǎn),致使沖壓技術(shù)也形成了一些與體積成形不同的特點(diǎn)。
(1)由于不需要在板材毛坯的表面施加很大的單位壓力即可使其成形,所以在沖壓技術(shù)中關(guān)于模具強(qiáng)度與剛度的研究并不十分重要。相反地卻發(fā)展了許多簡易模具技術(shù)。由于相同的原因,也促使靠氣體或液體壓力成形的工藝方法得以發(fā)展。
(2)因沖壓成形時(shí)的平面應(yīng)力狀態(tài)或更為單純的應(yīng)變狀態(tài)(與體積成形相比),當(dāng)前對沖壓成形中毛坯的變形、力與電能參數(shù)方面的研究較為深人,有條件運(yùn)用合理的科學(xué)方法進(jìn)行沖壓加工。借助于電子計(jì)算機(jī)與先進(jìn)的測試手段,在對板材性能與沖壓變形參數(shù)進(jìn)行實(shí)時(shí)測量與分析的基礎(chǔ)上,實(shí)現(xiàn)沖壓過程智能化控制的研究工作也在開展。
(3)人們已經(jīng)認(rèn)識到?jīng)_壓成形與原材料有十分密切的關(guān)系。所以,對板材沖壓性能即成形性與形狀穩(wěn)定性的研究,目前已成為沖壓技術(shù)的一個(gè)重要內(nèi)容。對板材沖壓性能的研究工作不僅是沖壓技術(shù)發(fā)展的需要,而且也促進(jìn)了鋼鐵工業(yè)生產(chǎn)技術(shù)的發(fā)展,為其提高板材的質(zhì)量提供了一個(gè)可靠的基礎(chǔ)與依據(jù)。
3 我國模具工業(yè)現(xiàn)狀及發(fā)展趨勢
由于歷史原因形成的封閉式、“大而全”的企業(yè)特征,我國大部分企業(yè)均設(shè)有模具車間,處于本廠的配套地位,自70年代末才有了模具工業(yè)化和生產(chǎn)專業(yè)化這個(gè)概念。生產(chǎn)效率不高,經(jīng)濟(jì)效益較差。模具行業(yè)的生產(chǎn)小而散亂,跨行業(yè)、投資密集,專業(yè)化、商品化和技術(shù)管理水平都比較低。
據(jù)不完全統(tǒng)計(jì),全國現(xiàn)有模具專業(yè)生產(chǎn)廠、產(chǎn)品廠配套的模具車間(分廠)近17000家,約60萬從業(yè)人員,年模具總產(chǎn)值達(dá)200億元人民幣。但是,我國模具工業(yè)現(xiàn)有能力只能滿足需求量的60%左右,還不能適應(yīng)國民經(jīng)濟(jì)發(fā)展的需要。目前,國內(nèi)需要的大型、精密、復(fù)雜和長壽命的模具還主要依靠進(jìn)口。據(jù)海關(guān)統(tǒng)計(jì),1997年進(jìn)口模具價(jià)值6.3億美元,這還不包括隨設(shè)備一起進(jìn)口的模具;1997年出口模具僅為7800萬美元。目前我國模具工業(yè)的技術(shù)水平和制造能力,是我國國民經(jīng)濟(jì)建設(shè)中的薄弱環(huán)節(jié)和制約經(jīng)濟(jì)持續(xù)發(fā)展的瓶頸。
3.1 模具工業(yè)產(chǎn)品結(jié)構(gòu)的現(xiàn)狀
??按照中國模具工業(yè)協(xié)會(huì)的劃分,我國模具基本分為10大類,其中,沖壓模和塑料成型模兩大類占主要部分。按產(chǎn)值計(jì)算,目前我國沖壓模占50%左右,塑料成形模約占20%,拉絲模(工具)約占10%,而世界上發(fā)達(dá)工業(yè)國家和地區(qū)的塑料成形模比例一般占全部模具產(chǎn)值的40%以上。
??我國沖壓模大多為簡單模、單工序模和符合模等,精沖模,精密多工位級進(jìn)模還為數(shù)不多,模具平均壽命不足100萬次,模具最高壽命達(dá)到1億次以上,精度達(dá)到3~5um,有50個(gè)以上的級進(jìn)工位,與國際上最高模具壽命6億次,平均模具壽命5000萬次相比,處于80年代中期國際先進(jìn)水平。
我國的塑料成形模具設(shè)計(jì),制作技術(shù)起步較晚,整體水平還較低。目前單型腔,簡單型腔的模具達(dá)70%以上,仍占主導(dǎo)地位。一模多腔精密復(fù)雜的塑料注射模,多色塑料注射模已經(jīng)能初步設(shè)計(jì)和制造。模具平均壽命約為80萬次左右,主要差距是模具零件變形大、溢邊毛刺大、表面質(zhì)量差、模具型腔沖蝕和腐蝕嚴(yán)重、模具排氣不暢和型腔易損等,注射模精度已達(dá)到5um以下,最高壽命已突破2000萬次,型腔數(shù)量已超過100腔,達(dá)到了80年代中期至90年代初期的國際先進(jìn)水平。
3.2 模具工業(yè)技術(shù)結(jié)構(gòu)現(xiàn)狀
?? 我國模具工業(yè)目前技術(shù)水平參差不齊,懸殊較大。從總體上來講,與發(fā)達(dá)工業(yè)國家及港臺地區(qū)先進(jìn)水平相比,還有較大的差距。
在采用CAD/CAM/CAE/CAPP等技術(shù)設(shè)計(jì)與制造模具方面,無論是應(yīng)用的廣泛性,還是技術(shù)水平上都存在很大的差距。在應(yīng)用CAD技術(shù)設(shè)計(jì)模具方面,僅有約10%的模具在設(shè)計(jì)中采用了CAD,距拋開繪圖板還有漫長的一段路要走;在應(yīng)用CAE進(jìn)行模具方案設(shè)計(jì)和分析計(jì)算方面,也才剛剛起步,大多還處于試用和動(dòng)畫游戲階段;在應(yīng)用CAM技術(shù)制造模具方面,一是缺乏先進(jìn)適用的制造裝備,二是現(xiàn)有的工藝設(shè)備(包括近10多年來引進(jìn)的先進(jìn)設(shè)備)或因計(jì)算機(jī)制式(IBM微機(jī)及其兼容機(jī)、HP工作站等)不同,或因字節(jié)差異、運(yùn)算速度差異、抗電磁干擾能力差異等,聯(lián)網(wǎng)率較低,只有5%左右的模具制造設(shè)備近年來才開展這項(xiàng)工作;在應(yīng)用CAPP技術(shù)進(jìn)行工藝規(guī)劃方面,基本上處于空白狀態(tài),需要進(jìn)行大量的標(biāo)準(zhǔn)化基礎(chǔ)工作;在模具共性工藝技術(shù),如模具快速成型技術(shù)、拋光技術(shù)、電鑄成型技術(shù)、表面處理技術(shù)等方面的CAD/CAM技術(shù)應(yīng)用在我國才剛起步。計(jì)算機(jī)輔助技術(shù)的軟件開發(fā),尚處于較低水平,需要知識和經(jīng)驗(yàn)的積累。我國大部分模具廠、車間的模具加工設(shè)備陳舊,在役期長、精度差、效率低,至今仍在使用普通的鍛、車、銑、刨、鉆、磨設(shè)備加工模具,熱處理加工仍在使用鹽浴、箱式爐,操作憑工人的經(jīng)驗(yàn),設(shè)備簡陋,能耗高。設(shè)備更新速度緩慢,技術(shù)改造,技術(shù)進(jìn)步力度不大。雖然近年來也引進(jìn)了不少先進(jìn)的模具加工設(shè)備,但過于分散,或不配套,利用率一般僅有25%左右,設(shè)備的一些先進(jìn)功能也未能得到充分發(fā)揮。
缺乏技術(shù)素質(zhì)較高的模具設(shè)計(jì)、制造工藝技術(shù)人員和技術(shù)工人,尤其缺乏知識面寬、知識結(jié)構(gòu)層次高的復(fù)合型人才。中國模具行業(yè)中的技術(shù)人員,只占從業(yè)人員的8%~12%左右,且技術(shù)人員和技術(shù)工人的總體技術(shù)水平也較低。1980年以前從業(yè)的技術(shù)人員和技術(shù)工人知識老化,知識結(jié)構(gòu)不能適應(yīng)現(xiàn)在的需要;而80年代以后從業(yè)的人員,專業(yè)知識、經(jīng)驗(yàn)匱乏,動(dòng)手能力差,不安心,不愿學(xué)技術(shù)。近年來人才外流不僅造成人才數(shù)量與素質(zhì)水平下降,而且人才結(jié)構(gòu)也出現(xiàn)了新的斷層,青黃不接,使得模具設(shè)計(jì)、制造的技術(shù)水平難以提高。
3.3 模具工業(yè)配套材料,標(biāo)準(zhǔn)件結(jié)構(gòu)現(xiàn)狀
?? 近10多年來,特別是“八五”以來,國家有關(guān)部委已多次組織有關(guān)材料研究所、大專院校和鋼鐵企業(yè),研究和開發(fā)模具專用系列鋼種、模具專用硬質(zhì)合金及其他模具加工的專用工具、輔助材料等,并有所推廣。但因材料的質(zhì)量不夠穩(wěn)定,缺乏必要的試驗(yàn)條件和試驗(yàn)數(shù)據(jù),規(guī)格品種較少,大型模具和特種模具所需的鋼材及規(guī)格還有缺口。在鋼材供應(yīng)上,解決用戶的零星用量與鋼廠的批量生產(chǎn)的供需矛盾,尚未得到有效的解決。另外,國外模具鋼材近年來相繼在國內(nèi)建立了銷售網(wǎng)點(diǎn),但因渠道不暢、技術(shù)服務(wù)支撐薄弱及價(jià)格偏高、外匯結(jié)算制度等因素的影響,目前推廣應(yīng)用不多。
?? 模具加工的輔助材料和專用技術(shù)近年來雖有所推廣應(yīng)用,但未形成成熟的生產(chǎn)技術(shù),大多仍還處于試驗(yàn)摸索階段,如模具表面涂層技術(shù)、模具表面熱處理技術(shù)、模具導(dǎo)向副潤滑技術(shù)、模具型腔傳感技術(shù)及潤滑技術(shù)、模具去應(yīng)力技術(shù)、模具抗疲勞及防腐技術(shù)等尚未完全形成生產(chǎn)力,走向商品化。一些關(guān)鍵、重要的技術(shù)也還缺少知識產(chǎn)權(quán)的保護(hù)。
?? 我國的模具標(biāo)準(zhǔn)件生產(chǎn),80年代初才形成小規(guī)模生產(chǎn),模具標(biāo)準(zhǔn)化程度及標(biāo)準(zhǔn)件的使用覆蓋面約占20%,從市場上能配到的也只有約30個(gè)品種,且僅限于中小規(guī)格。標(biāo)準(zhǔn)凸凹模、熱流道元件等剛剛開始供應(yīng),模架及零件生產(chǎn)供應(yīng)渠道不暢,精度和質(zhì)量也較差。
3.4 模具工業(yè)產(chǎn)業(yè)組織結(jié)構(gòu)現(xiàn)狀
?? 我國的模具工業(yè)相對較落后,至今仍不能稱其為一個(gè)獨(dú)立的行業(yè)。我國目前的模具生產(chǎn)企業(yè)可劃分為四大類:專業(yè)模具廠,專業(yè)生產(chǎn)外供模具;產(chǎn)品廠的模具分廠或車間,以供給本產(chǎn)品廠所需的模具為主要任務(wù);三資企業(yè)的模具分廠,其組織模式與專業(yè)模具廠相類似,以小而專為主;鄉(xiāng)鎮(zhèn)模具企業(yè),與專業(yè)模具廠相類似。其中以第一類數(shù)量最多,模具產(chǎn)量約占總產(chǎn)量的70%以上。我國的模具行業(yè)管理體制分散。目前有19個(gè)大行業(yè)部門制造和使用模具,沒有統(tǒng)一管理的部門。僅靠中國模具工業(yè)協(xié)會(huì)統(tǒng)籌規(guī)劃,集中攻關(guān),跨行業(yè),跨部門管理困難很多。
?? 模具適宜于中小型企業(yè)組織生產(chǎn),而我國技術(shù)改造投資向大中型企業(yè)傾斜時(shí),中小型模具企業(yè)的投資得不到保證。包括產(chǎn)品廠的模具車間、分廠在內(nèi),技術(shù)改造后不能很快收回其投資,甚至負(fù)債累累,影響發(fā)展。雖然大多數(shù)產(chǎn)品廠的模具車間、分廠技術(shù)力量強(qiáng),設(shè)備條件較好,生產(chǎn)的模具水平也較高,但設(shè)備利用率低。
?? 我國模具價(jià)格長期以來同其價(jià)值不協(xié)調(diào),造成模具行業(yè)“自身經(jīng)濟(jì)效益小,社會(huì)效益大”的現(xiàn)象?!案赡>叩牟蝗绺赡>邩?biāo)準(zhǔn)件的,干標(biāo)準(zhǔn)件的不如干模具帶件生產(chǎn)的。干帶件生產(chǎn)的不如用模具加工產(chǎn)品的”之類不正常現(xiàn)象存在。
4 工程
工程這門科學(xué),是運(yùn)用科學(xué),數(shù)學(xué),經(jīng)濟(jì),社會(huì)和實(shí)用知識的總稱,常用于設(shè)計(jì)和建造建筑物,機(jī)器,設(shè)備,系統(tǒng)等等,可以穩(wěn)定地實(shí)現(xiàn)對社會(huì)的需求提供解決方案的專業(yè)。
美國工程師專業(yè)發(fā)展理事會(huì)(ECPD,ABET的前身)定義了“工程”為:朗顯示對應(yīng)的拉丁字符的拼音
創(chuàng)造性地運(yùn)用科學(xué)原理,設(shè)計(jì)或開發(fā)的結(jié)構(gòu),機(jī)器,儀器或生產(chǎn)工藝,或單獨(dú)或聯(lián)合的利用他們的產(chǎn)品,或建造或操作其設(shè)計(jì),或預(yù)測其具體的操作條件下的行為,作為全方位的預(yù)定功能,是安全操作和經(jīng)濟(jì)學(xué)的生命和財(cái)產(chǎn)。
4.1 歷史
在維基詞典中查找工程,工程的概念已經(jīng)存在,解釋為制造,如滑輪,杠桿和車輪等等古代人類發(fā)明的。這些發(fā)明每一方都與現(xiàn)代的工程定義相一致,利用基本力學(xué)原理,開發(fā)有用的工具和對象
長期的工程技術(shù)本身有一個(gè)更近詞源,工程師。而它本身的歷史可以追溯到1325年,當(dāng)一個(gè)engine'er(字面上看,一個(gè)經(jīng)營發(fā)動(dòng)機(jī))原指“軍用發(fā)動(dòng)機(jī)的構(gòu)造”,現(xiàn)在已經(jīng)過時(shí)了,一個(gè)“發(fā)動(dòng)機(jī)”指的是一個(gè)軍事機(jī)器,也就是說,在戰(zhàn)爭中使用的機(jī)械武器(例如,一個(gè)投石器)。過時(shí)的用法有存活至今例外,其中值得注意的是軍事工程兵,例如,美國陸軍工程兵。
這個(gè)“engine'er”本身更老的起源是,最終從拉丁語派生ingenium(約1250),意思是“生的素質(zhì),特別是精神力量”后來,隨著橋梁和建筑技術(shù)學(xué)科成熟的平民建筑設(shè)計(jì),土木工程一詞進(jìn)入,以此來區(qū)分在這些非專業(yè)的軍事工程建設(shè),并參與了這些詞庫舊的軍事工程學(xué)科。
4.2 古代時(shí)代
在亞歷山大燈塔,埃及金字塔,巴比倫的空中花園,雅典衛(wèi)城帕特農(nóng)神廟和希臘,羅馬渡槽,威盛阿皮亞和羅馬斗獸場,特奧蒂瓦坎的城市和瑪雅,印加和阿茲特克帝國, 中國的長城,其中許多東西能作為一個(gè)獨(dú)立的聰明才智和古代民事和軍事工程師技能的證明。
最早的土木工程師的美稱,是印和闐。左塞爾作為法老的官員之一,他可能在公元前約2630至2611年于薩卡拉設(shè)計(jì)和監(jiān)督建造階梯金字塔。他可能也已為第一位的建筑工程師。
古希臘的發(fā)展無論在民用和軍事領(lǐng)域,都使用了安提凱希拉機(jī)制,第一個(gè)已知的機(jī)械計(jì)算機(jī),與阿基米德的機(jī)械的發(fā)明是早期機(jī)械工程的例子。阿基米德的發(fā)明以及安提凱希拉機(jī)制的若干規(guī)定以及差行星齒輪傳動(dòng)裝置或更復(fù)雜的知識,兩機(jī)理論的主要原則,幫助設(shè)計(jì)了工業(yè)革命的齒輪火車,今天仍然被廣泛地應(yīng)用于不同領(lǐng)域,如機(jī)器人和汽車工程。
中國,希臘和羅馬軍隊(duì),如火炮是由希臘人圍繞公元前4世紀(jì)發(fā)明,中世紀(jì)弩和投石車、投石機(jī)的復(fù)雜的軍事機(jī)器的發(fā)明和設(shè)計(jì)制造。
4.3文藝復(fù)興時(shí)代
第一個(gè)電氣工程師被認(rèn)為是1600年的Magnete,對“電”的出版創(chuàng)始人威廉吉爾伯特。 第一臺蒸汽發(fā)動(dòng)機(jī),由機(jī)械工程師托馬斯薩弗里發(fā)明于1698年。此裝置的研制牽扯到了在未來幾十年的工業(yè)革命,大規(guī)模生產(chǎn)的開始。
隨著工程師這種職業(yè)的地位不斷上升,在十八世紀(jì),這個(gè)詞的意義變得更加狹窄,其中應(yīng)用到數(shù)學(xué)和科學(xué)應(yīng)用到這些目標(biāo)的領(lǐng)域。同樣,軍事和民用工程機(jī)械工業(yè)也作為已知的領(lǐng)域融入到了工程。
4.4 現(xiàn)代時(shí)代
國際空間站是一個(gè)由多學(xué)科組成的現(xiàn)代工程技術(shù)。
電氣工程可以在1800年追溯到亞歷山德羅伏,邁克爾法拉第,格奧爾格歐姆的實(shí)驗(yàn),他人和電動(dòng)機(jī)發(fā)明的實(shí)驗(yàn)起源于1872年。詹姆斯麥克斯韋和赫茲于19世紀(jì)的作品引擴(kuò)寬了電子領(lǐng)域。在真空管和晶體管的發(fā)明,后來進(jìn)一步加速了電子產(chǎn)業(yè)發(fā)展到這樣的程度,目前電氣和電子工程師數(shù)量超過任何其他工程專業(yè)的同類。
托馬斯薩弗里和蘇格蘭工程師瓦特的發(fā)明提升了現(xiàn)代機(jī)械工程。在工業(yè)革命的發(fā)源地英國和海外發(fā)展的專業(yè)機(jī)器和他們的維修工具導(dǎo)致機(jī)械工程的快速增長。
化學(xué)工程,像它的對手機(jī)械工程一樣在十九世紀(jì)工業(yè)革命時(shí)期發(fā)展。由1880年的化學(xué)品的大規(guī)模生產(chǎn)的需要以及工業(yè)革命生產(chǎn)要求的新材料,新工藝,人民創(chuàng)建了一個(gè)新的行業(yè),致力于大規(guī)模開發(fā)化學(xué)品。化學(xué)工程師的角色是設(shè)計(jì)這些化學(xué)工廠和建造。
航空航天工程是一個(gè)更現(xiàn)代化的工程,擴(kuò)展了包括航天器設(shè)計(jì),使其達(dá)到高度。它的起源可以追溯到大約在世紀(jì)之交的航空先驅(qū),19世紀(jì)末至20初。早期航空的工程知識,主要是一些概念和其他部門的工程技術(shù)經(jīng)驗(yàn)的引進(jìn)。
1863年在耶魯大學(xué)應(yīng)用科學(xué)工程中的第一個(gè)博士在美國獲得前往威拉德吉布斯的機(jī)會(huì),他也是第二批博士在美國進(jìn)修。僅僅十年后,萊特兄弟成功的飛行,20世紀(jì)20年代通過第一次世界大戰(zhàn)軍用飛機(jī)的發(fā)展,航空工業(yè)獲得廣泛發(fā)展。同時(shí),提供基本的背景研究,科學(xué)實(shí)驗(yàn)相結(jié)合,理論物理仍在繼續(xù)。 1990年,隨著計(jì)算機(jī)技術(shù)的興起,師艾倫設(shè)計(jì)了第一個(gè)電腦工程。
4.5 工程主要分公司
工程,就像其他科學(xué),是一個(gè)廣泛的學(xué)科,通常分為幾個(gè)子學(xué)科。這些不同學(xué)科的關(guān)注自己工作領(lǐng)域的工程。最初的工程師將在一個(gè)特定的學(xué)科培訓(xùn)在整個(gè)工程師的生涯中,工程師有可能成為多學(xué)科。歷史上工程的主要分支分類如下:
航天工程 - 飛機(jī),航天器和相關(guān)主題的設(shè)計(jì)。
化學(xué)工程 - 化工原理開發(fā)及大規(guī)模的化學(xué)過程,以及設(shè)計(jì)新的特殊材料和燃料。
土木工程 - 設(shè)計(jì)以及公共和私人工程,如基礎(chǔ)設(shè)施(道路,鐵路,供水和水處理等),橋梁和建筑物的建設(shè)。
電氣工程 - 一個(gè)非常廣泛的領(lǐng)域,可能包括設(shè)計(jì)和各種電器及電子系統(tǒng),如電子線路,發(fā)電機(jī),電動(dòng)機(jī),電磁/機(jī)電設(shè)備,電子器件,電子電路,光纖,光電器件,計(jì)算機(jī)系統(tǒng),研究,電信和電子產(chǎn)品。
機(jī)械工程 - 以物理,機(jī)械系統(tǒng)設(shè)計(jì),如發(fā)動(dòng)機(jī),壓縮機(jī),動(dòng)力系統(tǒng),運(yùn)動(dòng)鏈,真空技術(shù),設(shè)備和振動(dòng)隔離設(shè)備的工程。
有時(shí)新專業(yè)與傳統(tǒng)領(lǐng)域相結(jié)合,形成新的分支。一個(gè)新的或新興的應(yīng)用領(lǐng)域通常會(huì)暫時(shí)被定義為一個(gè)置換或?qū)ΜF(xiàn)有學(xué)科的一個(gè)子集,往往有灰色地帶時(shí),以一個(gè)給定的子場變大或突出到足以作為一個(gè)新的“分支分類”。出現(xiàn)這樣的一個(gè)關(guān)鍵指標(biāo)是重點(diǎn)大學(xué)時(shí)開始在新的領(lǐng)域建立部門和方案。
對于其中的每個(gè)領(lǐng)域存在著相當(dāng)多的重疊,尤其是在物理、化學(xué)和數(shù)學(xué)科學(xué)應(yīng)用到了自己的學(xué)科領(lǐng)域。
4.6 方法
例如渦輪的設(shè)計(jì)需要從許多領(lǐng)域的工程師合作,因?yàn)橄到y(tǒng)是受機(jī)械,電磁和化學(xué)過程。葉片,轉(zhuǎn)子和定子以及蒸汽循環(huán)都需要精心設(shè)計(jì)和優(yōu)化。
工程師運(yùn)用物理學(xué)和數(shù)學(xué)科學(xué)領(lǐng)域找到合適的解決問題的方法并作出舉措改善現(xiàn)狀。比以往任何時(shí)候,工程師們現(xiàn)在要求為他們設(shè)計(jì)項(xiàng)目有關(guān)的科學(xué)知識更豐富,因此,他們在整個(gè)職業(yè)生涯的不斷學(xué)習(xí)新知識。
工程師設(shè)計(jì)選擇不同的解決方案,如果有多個(gè)選項(xiàng)存在的利弊權(quán)衡的,必須選擇出最符合要求的那一個(gè),工程師的重要而獨(dú)特的任務(wù)就是將其識別,理解和解釋上的設(shè)計(jì),以便產(chǎn)生一個(gè)成功的設(shè)計(jì)。但它通常是不夠的,建立一個(gè)在技術(shù)上成功的產(chǎn)品,還必須滿足進(jìn)一步的要求并克服限制。限制可能包括可用資源有限,有想象力或技術(shù)的限制,為今后的修改和補(bǔ)充的靈活性,以及諸如成本,安全性,市場化,生產(chǎn)能力和可維護(hù)性要求的其他因素。通過了解的限制,工程師導(dǎo)出了在其中一個(gè)可行的物體或系統(tǒng)。
4.7 問題解決
工程師利用他們的科學(xué),數(shù)學(xué)和相應(yīng)的經(jīng)驗(yàn)知識,以尋找合適的解決方案的一個(gè)問題。工程被認(rèn)為是應(yīng)用數(shù)學(xué)和科學(xué)的一個(gè)分支。建立適當(dāng)?shù)臄?shù)學(xué)模型的一個(gè)問題讓他們?nèi)シ治鏊?,并測試可能的解決方案。
一個(gè)問題通常存在多種合理的解決方案,因此工程師必須評估其優(yōu)劣,選擇不同的設(shè)計(jì)選擇最佳的解決方案能滿足其需求。收集大量專利統(tǒng)計(jì)數(shù)據(jù),以“低層次”工程設(shè)計(jì)的核心,而在更高層次上做出最好的設(shè)計(jì),消除矛盾,找出導(dǎo)致了問題的核心。
工程師一般嘗試預(yù)測他們的設(shè)計(jì)有多好并發(fā)揮自己的所有能力后全面生產(chǎn)。他們使用包括:原型,比例模型,模擬,破壞性試驗(yàn),無損檢測,壓力試驗(yàn)。測試確保產(chǎn)品將達(dá)到預(yù)期效果。
作為專業(yè)工程師要有認(rèn)真對待設(shè)計(jì)產(chǎn)品的責(zé)任,并完成生產(chǎn)預(yù)期的設(shè)計(jì),以免造成意外傷害殃及市場。因此通常需要校核,包括工程師在其設(shè)計(jì)的安全系數(shù),工程師的設(shè)計(jì)需要更大的安全系數(shù),以減少意外的失敗的風(fēng)險(xiǎn)。
對不合格產(chǎn)品的研究被稱為法醫(yī)工程,并能通過幫助評估它的實(shí)際情況而設(shè)計(jì)的產(chǎn)品設(shè)計(jì)師。例如橋梁工程,在橋梁坍塌后,應(yīng)當(dāng)仔細(xì)分析,找出橋梁坍塌的原因以及造成災(zāi)害的損失。
4.8 電腦使用
航天飛機(jī)在周圍的高速空氣中重返大氣層進(jìn)行流量計(jì)算機(jī)模擬。解決方案要求的流量建模的流體流動(dòng)與傳熱方程的綜合影響進(jìn)行計(jì)算。這樣的計(jì)算只能依靠計(jì)算機(jī)的使用。
如同所有的現(xiàn)代科學(xué)技術(shù),計(jì)算機(jī)和軟件發(fā)揮著越來越重要的作用。以及典型的商業(yè)應(yīng)用軟件也有計(jì)算機(jī)輔助申請數(shù)目(計(jì)算機(jī)輔助技術(shù)),專門用于工程。計(jì)算機(jī)可用于生成基本物理過程,可以用數(shù)值方法解決模式。
行業(yè)最廣泛使用的工具之一,是計(jì)算機(jī)輔助設(shè)計(jì)(CAD)軟件使工程師創(chuàng)建三維模型,二維圖紙,繪制設(shè)計(jì)原理圖。民航處聯(lián)同數(shù)字樣機(jī)(DMU)的和CAE如有限元分析方法或分析元素軟件允許工程師創(chuàng)建的外觀設(shè)計(jì),可以無需進(jìn)行昂貴且費(fèi)時(shí)的物理原型的分析模型。
這些讓產(chǎn)品和組件為缺陷檢查;評估適應(yīng)和組裝,研究人體工程學(xué),并分析系統(tǒng)的靜態(tài)和動(dòng)態(tài)的特征,如壓力,溫度,電磁輻射的電流和電壓,數(shù)字邏輯電平,流體流動(dòng)和運(yùn)動(dòng)學(xué)。所有這些訪問和信息的發(fā)布是普遍組織了產(chǎn)品數(shù)據(jù)管理軟件的使用。也有許多工具支持,如電腦輔助制造(CAM)軟件工程任務(wù)的具體產(chǎn)生數(shù)控加工指令;生產(chǎn)工程制造流程管理軟件的EDA印刷電路板(PCB)和電子工程師電路原理圖;維修申請維修管理,民用工程AEC軟件。 近年來,利用計(jì)算機(jī)軟件來輔助品開發(fā)已集體來被視為產(chǎn)品生命周期管理(PLM)而聞名。
4.9社會(huì)背景
工程是一大課題,合作范圍從小型個(gè)人項(xiàng)目到大型國家企業(yè)。幾乎所有工程項(xiàng)目都依賴于一些融資機(jī)構(gòu)類別:一個(gè)公司,一個(gè)投資者的集合,或者一個(gè)政府。工程的最低限度是由少數(shù)種類的限制等問題是無償開放式設(shè)計(jì),工程和工程。
由于工程其本身的性質(zhì),必然與社會(huì)和人的行為相接觸。每個(gè)工程設(shè)計(jì)產(chǎn)品都將影響到社會(huì)。工程設(shè)計(jì)是一個(gè)非常強(qiáng)大的工具,使環(huán)境,社會(huì)和經(jīng)濟(jì)變化,它的應(yīng)用帶來了很大的責(zé)任。許多工程協(xié)會(huì)建立了工作守則和道德守則,以指導(dǎo)廣大成員,并告知公眾。
工程項(xiàng)目可能會(huì)受到爭議。從不同的工程學(xué)科的例子包括核武器的發(fā)展,三峽大壩的設(shè)計(jì)和運(yùn)動(dòng)型多用途車的使用和石油開采。對此,一些西方工程公司已制定嚴(yán)重的企業(yè)和社會(huì)責(zé)任政策。
工程是人類發(fā)展的主要驅(qū)動(dòng)力。撒哈拉以南的非洲地區(qū),許多國家僅有非常小的工程能力,這導(dǎo)致很多重要基礎(chǔ)設(shè)施無法發(fā)展,僅靠外來援助。對千年發(fā)展目標(biāo)的實(shí)現(xiàn)需要很多足夠的工程成就,發(fā)展基礎(chǔ)設(shè)施能力和可持續(xù)的技術(shù)發(fā)展。所有海外發(fā)展和救濟(jì)的非政府組織作出的工程設(shè)計(jì)中,工程師大量使用適用于災(zāi)害和開發(fā)方案的解決方案。一個(gè)慈善機(jī)構(gòu)的目標(biāo)是將良好的工程更好的服務(wù)于人類。
16
桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)用紙
1 The historical development of mold
David O.Kazmer.Injection mold design engineering.
Hanser Gardner Publications
The emergence of mold can be traced back thousands of years ago, pottery and bronze foundry, but the large-scale use is with the rise of modern industry and developed.
The 19th century, with the arms industry (gun's shell), watch industry, radio industry, dies are widely used. After World War II, with the rapid development of world economy, it became a mass production of household appliances, automobiles, electronic equipment, cameras, watches and other parts the best way. From a global perspective, when the United States in the forefront of stamping technology - many die of advanced technologies, such as simple mold, high efficiency, mold, die and stamping the high life automation, mostly originated in the United States; and Switzerland, fine blanking, cold in Germany extrusion technology, plastic processing of the Soviet Union are at the world advanced. 50's, mold industry focus is based on subscriber demand, production can meet the product requirements of the mold. Multi-die design rule of thumb, reference has been drawing and perceptual knowledge, on the design of mold parts of a lack of real understanding of function. From 1955 to 1965, is the pressure processing of exploration and development of the times - the main components of the mold and the stress state of the function of a mathematical sub-bridge, and to continue to apply to on-site practical knowledge to make stamping technology in all aspects of a leap in development. The result is summarized mold design principles, and makes the pressure machine, stamping materials, processing methods, plum with a structure, mold materials, mold manufacturing method, the field of automation devices, a new look to the practical direction of advance, so that pressing processing apparatus capable of producing quality products from the first stage.
Into the 70's to high speed, launch technology, precision, security, development of the second stage. Continue to emerge in this process a variety of high efficiency, business life, high-precision multi-functional automatic school to help with. Represented by the number of working places as much as other progressive die and dozens of multi-station transfer station module. On this basis, has developed both a continuous pressing station there are more slide forming station of the press - bending machine. In the meantime, the Japanese stand to the world's largest - the mold into the micron-level precision, die life, alloy tool steel mold has reached tens of millions of times, carbide steel mold to each of hundreds of millions of times p minutes for stamping the number of small presses usually 200 to 300, up to 1200 times to 1500 times. In the meantime, in order to meet product updates quickly, with the short duration (such as cars modified, refurbished toys, etc.) need a variety of economic-type mold, such as zinc alloy die down, polyurethane rubber mold, die steel skin, also has been very great development.
From the mid-70s so far can be said that computer-aided design, supporting the continuous development of manufacturing technology of the times. With the precision and complexity of mold rising, accelerating the production cycle, the mold industry, the quality of equipment and personnel are required to improve. Rely on common processing equipment, their experience and skills can not meet the needs of mold. Since the 90's, mechanical and electronic technologies in close connection with the development of NC machine tools, such as CNC wire cutting machine, CNC EDM, CNC milling, CNC coordinate grinding machine and so on. The use of computer automatic programming, control CNC machine tools to improve the efficiency in the use and scope. In recent years, has developed a computer to time-sharing by the way a group of direct management and control of CNC machine tools NNC system.
With the development of computer technology, computers have gradually into the mold in all areas, including design, manufacturing and management. 。 International Association for the Study of production forecasts to 2000, as a means of links between design and manufacturing drawings will lose its primary role. Automatic Design of die most fundamental point is to establish the mold standard and design standards. To get rid of the people of the past, and practical experience to judge the composition of the design center, we must take past experiences and ways of thinking, for series, numerical value, the number of type-based, as the design criteria to the computer store. Components are dry because of mold constitutes a million other differences, to come up with a can adapt to various parts of the design software almost impossible. But some products do not change the shape of parts, mold structure has certain rules, can be summed up for the automatic design of software. 如 If a Japanese company's CDM system for progressive die design and manufacturing, including the importation of parts of the figure, rough start, strip layout, determine the size and standard templates, assembly drawing and parts, the output NC program (for CNC machining Center and line cutting program), etc., used in 20% of the time by hand, reduce their working hours to 35 hours; from Japan in the early 80s will be three-dimensional cad / cam system for automotive panel die. Currently, the physical parts scanning input, map lines and data input, geometric form, display, graphics, annotations and the data is automatically programmed, resulting in effective control machine tool control system of post-processing documents have reached a high level; computer Simulation (CAE) technology has made some achievements. At high levels, CAD / CAM / CAE integration, that data is integrated, can transmit information directly with each other. Achieve network. Present. Only a few foreign manufacturers ca
2 Stamping
Stamping is a kind of plastic forming process in which a part is produced by means of the plastic forming of the material under the action of a die.Stamping is usually carried out under cold state, so it is also called cold stamping. Heat stamping is used only when the blank thickness is greater than 8-100mm. The blank material for stamping is usually in the form sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather) can also be formed by stamping.
Stamping is widely used in various metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc.
The process,equipment and die are the three foundational problems that needed to be studied in stamping.The characteristics of the sheet metal forming are as follows:
(1) High material utilization.
(2) Capacity to produce thin-walled parts of complex shape.
(3) Good interchangeability of stamping parts precision in shape and dimension.
(4) Parts with lightweight,high strength and fine rigidity can be obtained.
(5) High productivity, easy to operate and to realize mechanization and automatization.
The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet he market demands.
The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy steel, etc.
Stamping equipment includes plate shear and punching press. The former shears plate into strips with a definite width, which would be pressed later. The later can be used both in shearing and forming.
There are various processes of stamping forming with different working patterns and names, but these processes are similar to each other in plastic deformation.There are following conspicuous characteristics in stamping:
(1) The force per unit area perpendicular to the blank surface is not large but is enough to cause the material plastic deformation. It is much less than the inner stresses on the plate plane directions.In most cases stamping forming can be treated approximately as that of the plane stress state to simplify vastly the theoretical deformation mechanics analysis and the calculation of the process parameters.
(2) Due to the small relative thickness,the anti-instability capability of the blank is weak under compressive stress.As a result,the stamping process is difficult to proceed successfully without using the anti-instability device (such as blank holder).Therefore the variety of the stamping processes dominated by tensile stress are more than those dominated by compressive stress.
(3) During stamping forming,the inner stress of the blank is equal to or sometimes less than the yield stress of the material.In this point,the stamping is different from the bulk forming. During stamping forming,the influence of the hydrostatic pressure of the stress state in the deformation zone to the forming limit and the deformation resistance is not so important as to the bulk forming.In some circumstances,such influence may be neglected.Even in the case when this influence should be considered,the treating method is also different from that of bulk forming.
(4) In stamping forming,the restrain action of the die to the blank is not severe as in the case of the bulk forming(such as die forging).In bulk forming, the constraint forming is proceeded by the die with exactly the same shape of the part.Whereas in stamping,in most cases,the blank has a certain degree of freedom, only one surface of the blank contacts with the die.In some extra cases, such as the forming of the suspended region of sphere or cone,and curling at the end of tube, neither sides of the blank on the deforming zone contact with the die. The deformation in these regions are caused and controlled the die applying an external force to its adjacent area.
Due to the characteristics of stamping deformation and mechanics mentioned above,the stamping technique is different from the bulk metal forming:
(1) The importance of the strength and rigidity of the die in stamping forming is less than that in bulk forming because the blank can be formed without applying large pressure unit area on its surface.Instead,the techniques of the simple die and the pneumatic and hydraulic forming are developed.
(2) Due to the plane stress or simple strain state in comparison with bulk forming,more research on deformation or force and power parameters has been done, stamping forming can be performed by more reasonable scientific methods.Based on the real time measurement and analysis on the sheet metal properties and stamping parameters, by means of computer and some modem testing apparatus research on the intellectualized control of stamping process is also in proceeding.
(3) It is shown that there is a close relationship between stamping forming and raw material. The research on the properties of the stamping forming,that is,forming ability and shape stability, has become a key point in stamping technology. The research on the properties of the sheet metal stamping not only meets the need of the stamping technology development,but also enhances the manufacturing technique of iron and steel industry, and provides a reliable foundation for increasing sheet metal quality.
3 China's mold industry and its development trend
。 Due to historical reasons for the formation of closed, "big and complete" enterprise features, most enterprises in China are equipped with mold workshop, in factory matching status since the late 70s have a mold the concept of industrialization and specialization of production. Mold production industry is small and scattered, cross-industry, capital-intensive, professional, commercial and technical management level are relatively low.
According to incomplete statistics, there are now specialized in manufacturing mold, the product supporting mold factory workshop (factory) near 17 000, about 600 000 employees, annual output value reached 20 billion yuan mold. However, the existing capacity of the mold and die industry can only meet the demand of 60%, still can not meet the needs of national economic development. At present, the domestic needs of large, sophisticated, complex and long life of the mold also rely mainly on imports. According to customs statistics, in 1997 630 million U.S. dollars worth of imports mold, not including the import of mold together with the equipment; in 1997 only 78 million U.S. dollars export mold. 發(fā) 。 At present the technological level of China Die & Mould Industry and manufacturing capacity, China's national economy in the weak links and bottlenecks constraining sustainable economic development.
3.1 Research on the Structure of industrial products mold
In accordance with the division of China Mould Industry Association, China mold is divided into 10 basic categories, which, stamping die and plastic molding two categories accounted for the main part. Calculated by output, present, China accounts for about 50% die stamping, plastic molding die about 20%, Wire Drawing Die (Tool) about 10% of the world's advanced industrial countries and regions, the proportion of plastic forming die die general of the total output value 40%.
Most of our stamping die mold for the simple, single-process mode and meet the molds, precision die, precision multi-position progressive die is also one of the few, die less than 100 million times the average life of the mold reached 100 million times the maximum life of more than accuracy 3 ~ 5um, more than 50 progressive station, and the international life of the die 600 million times the highest average life of the die 50 million times compared to the mid 80s at the international advanced level.
China's plastic molding mold design, production technology started relatively late, the overall level of low. Currently a single cavity, a simple mold cavity 70%, and still dominant. 。A sophisticated multi-cavity mold plastic injection mold, plastic injection mold has been able to multi-color preliminary design and manufacturing. Mould is about 80 million times the average life span is about, the main difference is the large deformation of mold components, excess burr side of a large, poor surface quality, erosion and corrosion serious mold cavity, the mold cavity exhaust poor and vulnerable such as, injection mold 5um accuracy has reached below the highest life expectancy has exceeded 20 million times, the number has more than 100 chamber cavity, reaching the mid 80s to early 90s the international advanced level.
3.2 mold Present Status of Technology
Technical level of China's mold industry currently uneven, with wide disparities. Generally speaking, with the developed industrial countries, Hong Kong and Taiwan advanced level, there is a large gap.
The use of CAD / CAM / CAE / CAPP and other technical design and manufacture molds, both wide application, or technical level, there is a big gap between both. In the application of CAD technology design molds, only about 10% of the mold used in the design of CAD, aside from drawing board still has a long way to go; in the application of CAE design and analysis of mold calculation, it was just started, most of the game is still in trial stages and animation; in the application of CAM technology manufacturing molds, first, the lack of advanced manufacturing equipment, and second, the existing process equipment (including the last 10 years the introduction of advanced equipment) or computer standard (IBM PC and compatibles, HP workstations, etc.) different, or because of differences in bytes, processing speed differences, differences in resistance to electromagnetic interference, networking is low, only about 5% of the mold manufacturing equipment of recent work in this task; in the application process planning CAPP technology, basically a blank state, based on the need for a lot of standardization work; in the mold common technology, such as mold rapid prototyping technology, polishing, electroforming technologies, surface treatment technology aspects of CAD / CAM technology in China has just started. Computer-aided technology, software development, is still at low level, the accumulation of knowledge and experience required. Most of our mold factory, mold processing equipment shop old, long in the length of civilian service, accuracy, low efficiency, still use the ordinary forging, turning, milling, planing, drilling, grinding and processing equipment, mold, heat treatment is still in use salt bath, box-type furnace, operating with the experience of workers, poorly equipped, high energy consumption. Renewal of equipment is slow, technological innovation, technological progress is not much intensity. Although in recent years introduced many advanced mold processing equipment, but are too scattered, or not complete, only about 25% utilization, equipment, some of the advanced functions are not given full play.
Lack of technology of high-quality mold design, manufacturing technology and skilled workers, especially the lack of knowledge and breadth, knowledge structure, high levels of compound talents. China's mold industry and technical personnel, only 8% of employees 12%, and the technical personnel and skilled workers and lower the overall skill level. Before 1980, practitioners of technical personnel and skilled workers, the aging of knowledge, knowledge structure can not meet the current needs; and staff employed after 80 years, expertise, experience lack of hands-on ability, not ease, do not want to learn technology. In recent years, the brain drain caused by personnel not only decrease the quantity and quality levels, and personnel structure of the emergence of new faults, lean, make mold design, manufacturing difficult to raise the technical level.
3.3 mold industry supporting materials, standard parts of present condition
Over the past 10 years, especially the "Eighth Five-Year", the State organization of the ministries have repeatedly Material Research Institute, universities and steel enterprises, research and development of special series of die steel, molds and other mold-specific carbide special tools, auxiliary materials, and some promotion. However, due to the quality is not stable enough, the lack of the necessary test conditions and test data, specifications and varieties less, large molds and special mold steel and specifications are required for the gap. In the steel supply, settlement amount and sporadic users of mass-produced steel supply and demand contradiction, yet to be effectively addressed. In addition, in recent years have foreign steel mold set up sales outlets in China, but poor channels, technical services support the weak and prices are high, foreign exchange settlement system and other factors, promote the use of much current.
Mold supporting materials and special techniques in recent years despite the popularization and application, but failed to mature production technology, most still also in the exploratory stage tests, such as die coating technology, surface treatment technology mold, mold guide lubrication technology Die sensing technology and lubrication technology, mold to stress technology, mold and other anti-fatigue and anti-corrosion technology productivity has not yet fully formed, towards commercialization. Some key, important technologies also lack the protection of intellectual property.
China's mold standard parts production, the formation of the early 80s only small-scale production, standardization and stand
收藏