購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢Q:1304139763
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計
第1章 緒 論
1.1 概述選題的背景、目的及意義
汽車上所應(yīng)用的發(fā)動機具有轉(zhuǎn)矩變化范圍小、轉(zhuǎn)速高的特點,這與汽車實際的行駛狀況是不相適應(yīng)的。如果沒有變速器而直接將發(fā)動機與驅(qū)動橋連接在一起,首先由于發(fā)動機的轉(zhuǎn)矩小,不能克服汽車的行駛阻力,使汽車根本無法起步;其次假使汽車行駛起來,也會由于車速太高而不實用,甚至無法駕控。所以必須改造發(fā)動機的轉(zhuǎn)矩、轉(zhuǎn)速特性,使發(fā)動機的轉(zhuǎn)矩增大、轉(zhuǎn)速下降以適應(yīng)汽車實際行駛的要求。因此就出現(xiàn)了車用變速箱和主減速器。它們的共同努力使驅(qū)動輪的扭矩增大到發(fā)動機扭矩的若干倍,同時又可使其轉(zhuǎn)速減小到發(fā)動機轉(zhuǎn)速的幾分之一。
設(shè)計檔位不同的變速器,能讓汽車在條件良好的平直路面上的高速行駛,在路面不平和有較大坡度時輸出較大的扭矩。從經(jīng)濟性出發(fā),駕駛員可以根據(jù)具體情況,選擇變速箱的某一擋位,來減少燃油的消耗。從改變行駛方向上,發(fā)動機的旋轉(zhuǎn)方向從前往后看為順時針方向,且是不能改變,在某些情況下,設(shè)置了倒檔變速器的汽車還能倒向行駛。另外,在發(fā)動機起動和怠速運轉(zhuǎn)、變速器換檔、汽車滑行和暫時停車等情況下,都需要中斷發(fā)動機的動力傳動,變速器中設(shè)有的空檔能實現(xiàn)這些功能。
“十一五”期間,汽車工業(yè)發(fā)展迅猛,年產(chǎn)量由571萬輛上升到1826萬輛,私人汽車保有量由2365萬輛上升到6539萬輛,中國已成為世界最大的汽車生產(chǎn)和消費國之一。汽車作為一個在方方面面影響居民生產(chǎn)、生活的用品,它的動力性、經(jīng)濟性、通過性、操縱方式等任何一項突破都會對整個行業(yè)產(chǎn)生巨大的影響。作為車輛工程專業(yè)的本科學(xué)生,選擇變速器進行設(shè)計,在設(shè)計過程中會復(fù)習(xí)所學(xué)的專業(yè)課程、了解大量的專業(yè)知識,設(shè)計方案具有足夠的復(fù)雜程度,同時在生產(chǎn)有可行性。
1.2 國內(nèi)外研究狀況
現(xiàn)在汽車變速器的發(fā)展趨勢是向著可調(diào)自動變速箱或無級變速器方向發(fā)展?,F(xiàn)在市場上流行的變速器種類:1)雙離合變速器(Dual Clutch Transmission),基于手動變速器而又不是自動變速器,除了擁有手動變速器的靈活性及自動變速器的舒適性外,還能提供無間斷的動力輸出。?DCT的核心技術(shù)僅掌握在美國博格華納(BorgWarner)和德國舍弗勒(Schaeffler)集團手中?;贒CT技術(shù)的各公司不同變速器 :大眾 DSG (Direct Shift Gearbox) ,奧迪 S Tronic,寶馬 M DKG (Doppel Kuppling Getriebe, M Double Clutch gearbox) ,福特、沃爾沃 Powershift,保時捷 PDK (Porsche Doppelkupplungsgetribe),三菱 Twin Clutch SST。2)電控機械式自動變速器(Automated Mechanical Transmission),是在原有齒輪式機械變速器的基礎(chǔ)上加裝電腦控制系統(tǒng),對油門、離合器、變速桿的控制均采用了電動機驅(qū)動或液壓驅(qū)動的執(zhí)行機構(gòu),從而實現(xiàn)選擋、換擋的自動化控制,使汽車成為自動變速的汽車。它保持了原有的機械傳動結(jié)構(gòu)基本不變,所以齒轉(zhuǎn)傳動固有的傳動效率高、機構(gòu)緊湊、工作可靠等優(yōu)點被很好的繼承下來。3)無級變速器(Continuous Variable Transmission),結(jié)構(gòu)比傳統(tǒng)變速器簡單,體積更小,它既沒有手動變速器的眾多齒輪副,也沒有自動變速器復(fù)雜的行星齒輪組,它主要靠主、從動輪和金屬帶來實現(xiàn)速比的無級變化。奧迪、日產(chǎn) 、三菱、奧迪、 日產(chǎn)天籟、本田飛度、菲亞特、福特等世界名牌車系都有配備CVT變速器的轎車銷售。
1.3 選題的研究設(shè)想、研究方法
在此次設(shè)計中對變速器作了總體設(shè)計,對變速器的傳動方案和操作方式進行了選擇,對變速器主要參數(shù)的確定做了詳細說明,計算變速器的齒輪和軸的尺寸結(jié)構(gòu),對同步器和一些標準件做了選型設(shè)計。
采用文獻研究法。根據(jù)選題,通過查找文獻獲得資料,了解研究對象的組成、工作原理和待解決的問題。①了解有關(guān)問題的歷史和現(xiàn)狀,幫助確定研究課題。②形成關(guān)于研究對象的一般印象,有助于明確設(shè)計的內(nèi)容和設(shè)計過程。③能得到現(xiàn)實資料的比較資料。④有助于了解事物的全貌。采用定量分析法。在科學(xué)研究中,通過定量分析法可以使人們對研究對象的認識進一步精確化,以便更加科學(xué)地揭示規(guī)律,把握本質(zhì),理清關(guān)系,預(yù)測事物的發(fā)展趨勢。采用模擬法。模擬設(shè)計原形的主要特征,將已知信息轉(zhuǎn)化為設(shè)計的依據(jù),根據(jù)設(shè)計原形的各種機構(gòu)的零部件間的力學(xué)、配合關(guān)系,通過大量的計算與校核,以此為條件確定使用的理論和經(jīng)驗公式,保證設(shè)計的正確、合理。
1.4 設(shè)計的主要內(nèi)容
1、總體方案的設(shè)計,按照任務(wù)書給定的主要參數(shù)選擇相應(yīng)車型,參照其變速器的主要結(jié)構(gòu)選擇自己設(shè)計的變速器的類型、傳動機構(gòu)和倒擋布置方案;
2、變速器的主要參數(shù)的選擇計算,內(nèi)容包括:軸的直徑,傳動比范圍、中心距、外形尺寸,齒輪的模數(shù)、壓力角、螺旋角、齒寬、各檔齒輪齒數(shù);
4、齒輪、軸的計算和校核,內(nèi)容包括:齒輪彎曲應(yīng)力、接觸應(yīng)力計算,軸的強度、剛度計算,軸承的選擇和壽命計算;
5、同步器、操縱機構(gòu)的工作原理、結(jié)構(gòu)和選擇。
1.5 預(yù)期結(jié)果和意義
設(shè)計方案預(yù)計傳動機構(gòu)、操縱機構(gòu)布置方便,結(jié)構(gòu)簡單緊湊。換擋迅速,齒輪接觸平穩(wěn),各擋齒輪的變位系數(shù)、壓力角、螺旋角、模數(shù)和齒頂高系數(shù)的選擇考慮齒輪的受力、轉(zhuǎn)速和噪聲情況,按傳動比高低不同選擇不同:在高檔工作區(qū),通過選用較小的模數(shù),較小的正角度變位系數(shù)和較大的齒頂高系數(shù).,合理分配端面重合度和軸向重合度,以滿足現(xiàn)代變速箱的設(shè)計要求,達到降低噪聲,傳動平穩(wěn)的最佳效果;而在低檔工作區(qū),通過選用較大的模數(shù),較大的正角度變位系數(shù)和較小的齒頂高系數(shù),來增大低檔齒輪的彎曲強度,以滿足汽車變速箱低檔齒輪的低速大扭矩的強度要求,以獲得最有力的輸出功率。軸和齒輪要具有足夠的強度和剛度,通過校核檢驗設(shè)計是否合理,選擇的軸承在工作時間內(nèi)具有足夠的使用壽命。
本次設(shè)計的意義是將研究轉(zhuǎn)化為生產(chǎn)力。結(jié)合當(dāng)前汽車行業(yè)的發(fā)展前景,自主學(xué)習(xí)新技術(shù),研究工藝流程,培養(yǎng)思維的嚴謹性和專研學(xué)術(shù)的扎實作風(fēng),圍繞經(jīng)濟社會創(chuàng)造價值。
第2章 總體方案設(shè)計
2.1 技術(shù)參數(shù)
根據(jù)變速器設(shè)計所選擇的汽車基本參數(shù)如下表。
表2.1 設(shè)計基本參數(shù)表
項目
參數(shù)值
車型
東風(fēng)EQ1092
發(fā)動機
東風(fēng)EQ6100-1改進型
額定轉(zhuǎn)速(r/min)
3000
最大扭矩(N·m/n)
353
額定總質(zhì)量(kg)
9400
車長/寬/高(mm)
8145/2470/2485
最高車速(km/h)
90
最大爬坡度
30%
輪胎
9.00-20
2.2 設(shè)計應(yīng)滿足的基本要求
對設(shè)計的變速器基本要求如下:
1)改變傳動比,擴大驅(qū)動輪轉(zhuǎn)矩和轉(zhuǎn)速的變化范圍,以適應(yīng)經(jīng)常變化的行駛條件,同時使發(fā)動機在有利(功率較高而油耗較低)的工況下工作;
2)設(shè)置倒檔,在發(fā)動機旋轉(zhuǎn)方向不變情況下,使汽車能倒退行駛;
3)設(shè)置空擋,中斷動力傳遞,使發(fā)動機能夠起動、怠速,并便于變速器換擋;
4)設(shè)置動力輸出裝置,需要時能進行功率輸;
5)換擋迅速,省力,方便。汽車行駛過程中,變速器不得有跳擋,亂擋以及換擋沖擊等現(xiàn)象發(fā)生;
7)變速器應(yīng)當(dāng)有高的工作效率;
8)變速器還應(yīng)當(dāng)滿足輪廓尺寸小、質(zhì)量輕,制造成本低,維修方便等要求。
2.3 變速器的類型選擇
變速器的種類很多,按其傳動比的改變方式可以分為有級、無級和綜合式的。有級變速器根據(jù)前進檔檔數(shù)的不同,可以分為三、四、五檔和多檔變速器;而按其軸中心線的位置又分為固定軸線式、螺旋軸線(行星齒輪)式和綜合式的。其中,固定式變速器應(yīng)用較廣泛,又可分為兩軸式,三軸式和多軸式變速器。
其中兩軸式變速器多用于發(fā)動機前置前輪驅(qū)動的汽車上,中間軸式變速器多用于發(fā)動機前置后輪驅(qū)動的汽車上。與中間軸式變速器比較,兩軸式變速器有結(jié)構(gòu)簡單,輪廓尺寸小,布置方便,兩軸式變速器的缺點也很明顯:1)不能設(shè)置直接擋,所以在高擋工作時齒輪和軸承均承載,不僅工作噪聲增大,且易損壞。2)兩軸式變速器主減速器用螺旋圓錐齒輪或雙曲面齒輪,制造工藝復(fù)雜;三軸式變速器主減速器用圓柱齒輪,簡化了制造工藝。3)兩軸式變速器的前進檔均為一對齒輪副,而三軸式變速器則有兩對齒輪副。4)兩軸式變速器的低檔齒輪副大小相差懸殊,小齒輪工作循環(huán)次數(shù)比大齒輪要高得多,因此,小齒輪工作壽命比大齒輪要短。三軸式變速器的各前進檔均為常嚙合齒輪傳動,大小齒輪的徑向尺寸相差較小,因此壽命比較接近。5)兩軸式變速器,雖然可以有等于1的傳動比,但是仍要有一對齒輪傳動,因而有功率損失。而三軸式變速器,可以將輸入軸和輸出軸直接相連,得到直接檔,因而傳動效率高,磨損小,噪聲也較小。
綜上所述此次設(shè)計采用三軸五擋式變速器,其使用在東風(fēng)EQ1092改進型汽車上。選擇該車的依據(jù)是該車的主要技術(shù)指標與任務(wù)書上給定的參數(shù)基本一致。
2.4 變速器傳動機構(gòu)的分析
2.4.1 換檔機構(gòu)的選擇
1、滑動齒輪換檔,通常是采用滑動直齒輪換檔,但也有采用滑動斜齒輪換檔的?;瑒又饼X輪換檔的優(yōu)點是結(jié)構(gòu)簡單、緊湊、容易制造。缺點是換檔時齒端面承受很大的沖擊會導(dǎo)致齒輪過早損壞,并且直齒輪工作噪聲大,所以這種換檔方式一般僅用在一檔和倒檔上。
2、嚙合套換檔,用嚙合套換檔,可以將結(jié)構(gòu)為某傳動比的一對齒輪,制造成常嚙合的斜齒輪。用嚙合套換檔,因同時承受換檔沖擊載荷的接合齒齒數(shù)多,而輪齒又不參與換檔,因此它們都不會過早損壞,但是不能消除換檔沖擊,所以仍要求駕駛員有熟練的操作技術(shù)。此外,因增設(shè)了嚙合套和常嚙合齒輪,使變速器的軸向尺寸和旋轉(zhuǎn)部分的總慣量增大。因此,這種換檔方法目前只在某些要求不高的檔位及重型貨車變速器上使用。這是因為重型貨車檔位間的公比較小,要求換檔手感強,而且在這種車型上又不宜使用同步器(壽命太短,維修不便)。
3、同步器換檔,現(xiàn)在大多數(shù)汽車的變速器都采用同步器換檔。使用同步器能保證迅速、無沖擊、無噪聲換檔,與操作技術(shù)熟練程度無關(guān),從而提高了汽車的加速性、經(jīng)濟性和行駛安全性。同上述兩種換檔方法相比,雖然它有結(jié)構(gòu)復(fù)雜、制造精度要求高、軸向尺寸大、同步環(huán)使用壽命短等缺點,但仍然得到廣泛應(yīng)用。近年來,由于同步器廣泛使用,壽命問題已得到基本解決。
本次設(shè)計方案所有擋位均采用同步器換檔。
2.4.2倒檔布置方案
與前進擋位比較,倒擋使用率不高,為實現(xiàn)倒擋傳動,在中間軸和第二軸上的齒輪傳動路線中,加入一個中間傳動齒輪的方案。使在較為有利的單向循環(huán)彎曲應(yīng)力狀態(tài)下工作,并使倒擋傳動比略有增加。
因為變速器在一擋和倒擋工作時有較大的力,所以無論是兩軸式變速器還是中間軸式變速器的低檔與倒擋,都應(yīng)當(dāng)布置在在靠近軸的支承處,以減少軸的變形,保證齒輪重合度下降不多,然后按照從低擋到高擋順序布置各擋齒輪,這樣做既能使軸有足夠大的剛性,又能保證容易裝配。倒擋的傳動比雖然與一擋的傳動比接近,但因為使用倒擋的時間非常短,從這點出發(fā)有些方案將一擋布置在靠近軸的支承處,然后再布置倒擋。此時在倒擋工作時,齒輪磨損與噪聲在短時間內(nèi)略有增加,與此同時在一擋工作時齒輪的磨損與噪聲有所減少。
圖2.2 倒擋布置方案
圖2.2為常見的倒擋布置方案。圖2.2 B)所示方案的優(yōu)點是換倒擋時利用了中間軸上的一擋齒輪,因而縮短了中間軸的長度。但換擋時有兩對齒輪同時進入嚙合,使換擋困難。圖2.2 C)所示方案能獲得較大的倒擋傳動比,缺點是換擋程序不合理。圖2.2 D)所示方案針對前者的缺點做了修改,因而取代了圖2.2 C)所示方案。圖2.2 E)所示方案是將中間軸上的一,倒擋齒輪做成一體,將其齒寬加長。圖2.2 F)所示方案適用于全部齒輪副均為常嚙合齒輪,換擋更為輕便。為了充分利用空間,縮短變速器軸向長度,有的貨車倒擋傳動采用圖2.2 G)所示方案。其缺點是一,倒擋須各用一根變速器撥叉軸,致使變速器上蓋中的操縱機構(gòu)復(fù)雜一些。
綜上所述選擇倒擋布置方案F)。
2.5 設(shè)計方案
依據(jù)任務(wù)書上給定的參數(shù),選擇使用東風(fēng)EQ1092改進型汽車設(shè)計該車變速器。變速器的類型選擇三軸固定式,具有五個擋位,同步器作為換擋機構(gòu),倒擋齒輪靠近軸承支撐。參照圖2.3示出的東風(fēng)EQ1092型貨車的三軸式變速器傳動方案,將變速器第一軸和第二軸的軸線放在在同一直線上,不選擇結(jié)合套,而用同步器將它們連接得到直接擋。因為直接擋的利用率高于其它擋位,因而提高了變速器的使用壽命;在其它前進擋位工作時,變速器傳遞的動力需要經(jīng)過設(shè)置在第一軸,中間軸和第二軸上的兩對常嚙合齒輪傳遞,傳動效率略有降低。一擋和倒擋分別設(shè)置,減少換擋沖擊。
圖2.3 東風(fēng)EQ1092中型貨車的三軸式變速器傳動方案
2.6 本章小結(jié)
本章介紹了變速器、換擋機構(gòu)、倒擋布置的類型、結(jié)構(gòu)與選擇依據(jù)。分析了每種方案的優(yōu)缺點,復(fù)原了選擇車型變速器的布置方案,并針對選擇方案的缺點進行改進。
第3章 變速器設(shè)計計算
3.1軸的直徑
變速器工作時軸除傳遞轉(zhuǎn)矩外,還承受來自齒輪作用的徑向力,如果是斜齒輪還有軸向力。在這些力的作用下,變速器的軸必須有足夠的剛度和強度。軸的剛度不足會產(chǎn)生彎曲變形,破壞齒輪的正確嚙合,對齒輪的強度和耐磨性產(chǎn)生影響,增加工作噪聲。
中間軸式變速器的第二軸和中間軸中部直徑D=(0.45~0.60)A=54~72mm,軸的最大直徑D和支撐間距離L的比值,對中間軸,D/L=0.16~0.18;對第二軸,D/L=0.18~0.21。
第一軸花健部分直徑D(mm)可按下式初選
D=K =4.0~4.6=28.27~32.51mm (3.1)
式中K為經(jīng)驗系數(shù),K=4.0~4.6,為發(fā)動機最大轉(zhuǎn)矩353()
初選第二軸和中間軸中部直徑 D=0.45A=0.45120=54mm
3.2 傳動比范圍
變速器的傳動比范圍是指變速器最低擋傳動比與最高擋轉(zhuǎn)動比的比值。傳動比范圍的確定與選定的發(fā)動機參數(shù),汽車的最高車速和使用條件等因素有關(guān)。
汽車在最大爬坡路面上行使時,最大驅(qū)動力應(yīng)能克服輪胎與路面間滾動阻力及上坡阻力。由于汽車上坡行使時,車速不高,故可以忽略空氣阻力,這時:
(3.2)
式中:——最大驅(qū)動力;即 = /
——滾動阻力;即 =cos
——最大上坡阻力。即 =sin
把以上參數(shù)代入(3.2)得:
=7.308 (3.3)
以上是根據(jù)最大爬坡度確定一檔傳動比,式中:
——發(fā)動機最大扭矩,=353 N·m;
——變速器一檔傳動比;
——主傳動器傳動比,==5.636;
——汽車總質(zhì)量,=9400kg;
——道路滾動阻力系數(shù)取0.020;
——傳動系機械效率,取0.96;
——重力加速度;取=9.8;
——驅(qū)動輪滾動半徑,=20×25.4÷2+0.75×259=0.448 m;
——汽車最大爬坡度為30%,即=
由
式中,為常數(shù),也就是各檔之間的公比1.644,一般認為不宜大于 1.7~1.8。=7.310,==4.446,==2.703,==1.644,=1。的數(shù)值選擇參照表3.1。
表3.1 東風(fēng)EQ1092貨車變速器傳動比
擋位
一擋
二擋
三擋
四擋
五擋
倒擋
傳動比
7.31
4.31
2.45
1.54
1
7.66
3.3 變速器軸承
變速器軸承常采用圓柱滾子軸承,球軸承,滾針軸承,圓錐滾子軸承,滑動軸套等。至于何處應(yīng)當(dāng)采用何種軸承,是受結(jié)構(gòu)限制并隨所承受的載荷特點不同而不同。
汽車變速器結(jié)構(gòu)緊湊,尺寸小,采用尺寸大些的軸承結(jié)構(gòu)受限制,常在布置上有困難。如變速器的第二軸前端支承在第一軸常嚙合齒輪的內(nèi)腔中,內(nèi)腔尺寸足夠時可布置圓柱滾子軸承,若空間不足則采用滾針軸承。變速器第一軸前端支承在飛輪的內(nèi)腔里,因有足夠大的空間長采用球軸承來承受向力。作用在第一軸常嚙合齒輪上的軸向力,經(jīng)第一軸后部軸承傳給變速器殼體,此處常用軸承外圈有擋圈的球軸承。第二軸后端常采用球軸承,以軸向力和徑向力。中間軸上齒輪工作時產(chǎn)生的軸向力,原則上由前或后軸承來承受都可以,但當(dāng)在殼體前端面布置軸承蓋有困難的時候,必須由后端軸承承受軸向力,前端采用圓柱滾子軸承來承受徑向力。
變速器中采用圓錐滾子軸承雖然有直徑小,寬度較寬因而容量大,可承受高負荷等優(yōu)點,但也有需要調(diào)整預(yù)緊,裝配麻煩,磨損后軸易歪斜而影響齒輪正確嚙合的缺點。
變速器第一軸,第二軸的后部軸承以及中間軸前,后軸承,按直徑系列一般選用中系列球軸承或圓柱滾子軸承。軸承的直徑根據(jù)變速器中心距確定,并要保證殼體后壁兩軸承孔之間的距離不小于6~20mm,下限適用于輕型車和轎車。
滾針軸承,滑動軸套主要用在齒輪與軸不是固定連接,并要求兩者有相對運動的地方。滾針軸承有滾動摩擦損失小,傳動效率高,徑向配合間隙小,定位及運轉(zhuǎn)精度高,有利于齒輪嚙合等優(yōu)點?;瑒虞S套的徑向配合間隙大,易磨損,間隙增大后影響齒輪的定位和運轉(zhuǎn)精度并使工作噪聲增加?;瑒虞S套的優(yōu)點是制造容易,成本低。
在本次設(shè)計中主要選用了徑向單列球軸承和滾針軸承。
3.4 中心距A
對中間軸式變速器,是將中間軸與第二軸之間的距離成為變速器中心距。其大小不僅對變速器的外形尺寸,體積和質(zhì)量大小,而且對輪齒的接觸強度有影響。中心距越小,齒輪的接觸應(yīng)力大,齒輪壽命短。最小允許中心距當(dāng)有保證齒輪有必要的接觸強度來確定。變速器軸經(jīng)軸承安裝在殼體上,從布置軸承的可能與方便和不影響殼體的強度考慮,要求中心距取大些。此外受一擋小齒輪齒數(shù)不能過少的限制,要求中心距也要大些。
A= (3.4)
==116.77~130.35mm
式中,A為中心距(mm);為中心距系數(shù),貨車:=8.6~9.6; 為發(fā)動機最大轉(zhuǎn)矩=353();為變速器一擋傳動比=7.310.;為變速器傳動效率0.96。
變速器的中心距在117~130mm變化范圍內(nèi)取A=120。原則上總質(zhì)量小的汽車中心距小。
3.5 外形尺寸
變速器的橫向外形尺寸,可根據(jù)齒輪直徑以及倒擋中間齒輪和換擋機構(gòu)的布置初步確定。
貨車變速器殼體的軸向尺寸四檔(2.2~2.7)A,五檔(2.7~3.0)A
當(dāng)變速器選用常嚙合齒輪對數(shù)和同步器多時,中心距系數(shù)K應(yīng)取給出系數(shù)的上限。為檢測方便,A取整。
初定軸向殼體尺寸為327~363mm,在繪制裝配圖后從減少結(jié)構(gòu)尺寸,減輕重量方面考慮,軸向殼體尺寸定為290 mm。
3.6 齒輪參數(shù)
3.6.1 模數(shù)的選取
遵循的一般原則:為了減少噪聲應(yīng)合理減少模數(shù),增加尺寬;為使質(zhì)量小,增加數(shù),同時減少尺寬;從工藝方面考慮,各擋齒輪應(yīng)選用同一種模數(shù),而從強度方面考慮,各擋齒數(shù)應(yīng)有不同的模數(shù)。減少轎車齒輪工作噪聲有較為重要的意義,因此齒輪的模數(shù)應(yīng)選??;對貨車,減小質(zhì)量比噪聲更重要,故齒輪應(yīng)選大些的模數(shù)。
低擋齒輪應(yīng)選大些的模數(shù),其他擋位選另一種模數(shù)。少數(shù)情況下汽車變速器各擋齒輪均選用相同的模數(shù)。
嚙合套和同步器的接合齒多數(shù)采用漸開線齒輪。由于工藝上的原應(yīng),同一變速器的接合齒模數(shù)相同。其取用范圍是:乘用車和總質(zhì)量在1.8~14.0t的貨車為2.0~3.5mm。選取較小的模數(shù)值可使齒數(shù)增多,有利換擋。
第一軸齒輪法向模數(shù) ==2.62~3.25mm (3.5)
式中為模數(shù)系數(shù)范圍值(0.37~0.46)。
一擋齒輪端面模數(shù) ==3.840~5.075mm (3.6)
式中為模數(shù)系數(shù)范圍值(0.28~0.37)。
表3.2 變速器擋位模數(shù)表
擋數(shù)
常嚙合齒輪
五擋
四擋
三擋
二擋
一擋
倒擋
模數(shù)
3
3
3
3.5
3.5
4
4
3.6.2 壓力角
壓力角較小時,重合度大,傳動平穩(wěn),噪聲低;較大時可提高輪齒的抗彎強度和表面接觸強度。對貨車,為提高齒輪的承載能力,應(yīng)選用22.5°或25°等大些的壓力。實際上,因國家規(guī)定的標準壓力角為20°,所以變速器齒輪普遍采用的壓力角為20°。
嚙合套或同步器的接合齒壓力角用30°。
3.6.3 螺旋角
斜齒輪在變速器中得到廣泛的應(yīng)用。選斜齒輪的螺旋角,要注意他對齒輪工作噪聲齒輪的強度和軸向力的影響。在齒輪選用大些的螺旋角時,使齒輪嚙合的重合度增加,因而工作平穩(wěn)、噪聲降低。試驗還證明:隨著螺旋角的增大,齒的強度也相應(yīng)提高。不過當(dāng)螺旋角大于30時,其抗彎強度驟然下降,而接觸強度仍然繼續(xù)上升。因此,從提高低擋齒輪的抗彎強度出發(fā),并不希望用過大的螺旋角,以15~25為宜;而從提高高擋齒輪的接觸強度和增加重合度著眼,應(yīng)選用較大螺旋角,為加工工藝簡單,選擇同一螺旋角。
貨車變速器斜齒螺旋角β的選擇范圍:18°~26°。
初選的螺旋角=20。
3.6.4 齒寬b
應(yīng)注意齒寬對變速器的軸向尺寸,齒輪工作平穩(wěn)性,齒輪強度和齒輪工作時受力的均勻程度均有影響。
考慮到盡可能的減少質(zhì)量和縮短變速器的軸向尺寸,應(yīng)該選用較小的齒寬。減少齒寬會使斜齒輪傳動平穩(wěn)的優(yōu)點被削弱,還會使工作應(yīng)力增加。使用寬些的齒寬,工作時會因軸的變形導(dǎo)致齒輪傾斜,使齒輪沿齒寬方向受力不均勻并在齒寬方向磨損不均勻。
通常根據(jù)齒輪模數(shù)m的大小來選定齒寬。
斜齒: b==16.5~34(mm) (3.7)
式中取5.5~7.5 ,取b=21mm。
直齒: b==18~34(mm) (3.8)
式中取4.5~8.0 ,取b=21mm。
3.7 各擋齒輪齒數(shù)的分配
3.7.1 確定一擋齒輪的齒數(shù)
一擋為斜齒輪=,=4
一擋傳動比為 (3.9)
一擋齒數(shù)和 =2A/ ==56.38 (3.10)
計算后取整為57,然后進行大小齒輪齒數(shù)的分配。中間軸上小齒輪的最少齒數(shù),還受中間軸軸徑尺寸的限制,即受剛度的限制。在選定時,對軸的尺寸及齒輪齒數(shù)都要統(tǒng)一考慮。貨車中間軸式變速器中間軸上一擋齒輪數(shù)可在12~17間取,取=13。
輸出軸上一擋齒輪 =-=57-13=44
3.7.2 對中心距進行修正
因為計算齒數(shù)和后,經(jīng)過取整數(shù)使中心距有了變化,所以應(yīng)根據(jù)和齒輪變位系數(shù)新計算中心距,在以修正后的中心距作為各擋齒輪齒數(shù)分配的依據(jù)。
==121.37mm (3.11)
故修正后中心距A取121mm
對一擋齒輪進行角度變位:
端面嚙合角 : tan=tan/cos =21.17°
嚙合角 : cos==0.919 =21.13°
圖3.3 變位系數(shù)線圖
變位系數(shù)之和: =0.225
查變位系數(shù)圖線=0.00789, =3.38, ,
計算精確值:A=
一擋齒輪參數(shù):
分度圓直徑 =4×44/cos19.58°=186.80mm
=4×13/cos20.21°=55.19mm
齒頂高 =3.133mm
=4.37mm
式中: =(121-121.37)/4=-0.0925
=0.225-0.025=0.3175
=1
齒根高 =3.36mm
=1.435mm
式中: =1
齒全高 =5.805mm
齒頂圓直徑 =193.07mm
=63.93mm
齒根圓直徑 =180.53mm
=46.45mm
當(dāng)量齒數(shù) =52.63
=15.5
節(jié)圓直徑 186.81mm
93.40mm
55.19mm
27.59mm
3.7.3 確定常嚙合傳動齒輪副的齒數(shù)
常嚙合傳動齒輪為斜齒輪、五擋,, =3
==2.159≈2.16 (3.12)
而常嚙合傳動齒輪中心距和一檔齒輪的中心距相等,即
A=/2 (3.13)
+=2A/=75.80
求得五擋齒輪齒數(shù)為 =23.99取整24 =51.81取整52
則
對常嚙合齒輪進行角度變位:
理論中心距 =119.87mm
端面壓力角 tan=tan/cos =21.17°
端面嚙合角
變位系數(shù)之和: =0.690
查變位系數(shù)圖線=0.01816, =2.17 0.32 0.690-0.32=0.37
計算精確值:A=
常嚙合齒輪參數(shù):
分度圓直徑 =76.42mm
=165.57mm
齒頂高 =3.020mm
=3.170mm
式中: =0.3767
=0.3133
齒根高 =2.79mm
=2.64mm
齒全高 =5.81mm
齒頂圓直徑 =82.46mm
=171.91mm
齒根圓直徑 =70.84mm
=160.29mm
當(dāng)量齒數(shù) =28.70
=62.17
節(jié)圓直徑 76.42mm
38.21mm
165.58mm
82.79mm
3.7.4 確定其他各擋的齒數(shù)
1、二擋齒輪為斜齒輪,初選=20°, =3.5
==2.052 (3.14)
=64.97 (3.15)
由式(3.14)、(3.15)得=43.68,=21.28取整為=44,=21
則,==4.54≈=4.446
理論中心距 =121.05mm
端面壓力角 tan=tan/cos =21.17°
端面嚙合角
變位系數(shù)之和: =0.256
查變位系數(shù)圖線=0.00789, =2.095, 0.85, 0.356-0.85= -0.594
求的精確值: =19.93°
二擋齒輪參數(shù):
分度圓直徑 =163.83mm
=78.19mm
齒頂高 =5.279mm
=0.575mm
式中: =0.0143
=0.3417
齒根高 =1.4mm
=5.79mm
齒全高 =6.679mm
齒頂圓直徑 =173.72mm
=80.02mm
齒根圓直徑 =159.66mm
=65.96mm
當(dāng)量齒數(shù) =51.66
=25.83
節(jié)圓直徑 162.46mm
81.23mm
77.54mm
38.77mm
2、三擋齒輪為斜齒輪,初選=20°, =3.5
==1.248 (3.16)
=64.97 (3.17)
由式(3.16)、(3.17)得=36.07,=28.90,取整=36,=29
=2.690≈=2.703
對三擋齒輪進行角度變?yōu)椋?
理論中心距 =121.05mm
端面壓力角 tan=tan/cos =20.98°
端面嚙合角
變位系數(shù)之和: =0.356
查變位系數(shù)圖線=0.01095, =1.24, =0.68, =0.356-0.68=-0.324
求的精確值: =19.93°
三擋齒輪參數(shù):
分度圓直徑 =132.93mm
=107.08mm
齒頂高 =5.038mm
=1.484mm
齒根高 =1.995mm
=5.544mm
齒全高 =7.028mm
齒頂圓直徑 =143.01mm
=110.05mm
齒根圓直徑 =128.94mm
=95.99mm
當(dāng)量齒數(shù) =42.268
=34.049
節(jié)圓直徑 132.92mm
66.46mm
107.08mm
53.54mm
3、四擋齒輪為斜齒輪,初選螺旋角=20°, =3
==0.757 (3.18)
=76.18 (3.19)
由(3.18)、(3.19)得=32.78,=43.30,取整=33,=43
則: ==1.663≈=1.644
對四擋齒輪進行角度變位:
理論中心距 =120.87mm
端面壓力角 tan=tan/cos =20.96°
端面嚙合角
變位系數(shù)之和 =0.300
查變位系數(shù)圖線=0.00789, =1.30, =0.41, =-0.30-0.41= -0.11
求螺旋角的精確值: =20.21°
四擋齒輪參數(shù):
分度圓直徑 =104.21mm
=135.79mm
齒頂高 =4.245mm
=2.685mm
式中: =-0.095
齒根高 =2.52mm
=4.08mm
齒全高 =6.765mm
齒頂圓直徑 =112.70mm
=143.95mm
齒根圓直徑 =99.17mm
=127.63mm
當(dāng)量齒數(shù) =38.456
=50.148
節(jié)圓直徑 104.21mm
52.10mm
135.78mm
67.89mm
3.7.5 確定倒擋直齒齒輪齒數(shù)
取中間軸上的倒擋齒輪=13,倒擋齒輪選用的模數(shù)往往與一檔相同,倒擋齒輪的齒數(shù),一般在21-22之間,初選后,可計算出中間軸與倒擋軸的中心距
取=21 ===66mm
為保證倒擋齒輪的嚙合和不產(chǎn)生運動干涉,齒輪11和12的齒頂圓之間應(yīng)保持有0.5mm以上的間隙,則齒輪11的齒頂圓直徑應(yīng)為
=2121-4 (13+2)-1=181mm
所以 求出 =-2=45.25取45
計算倒擋軸和第二軸的中心距:===132mm
倒擋傳動比: ===7.5
節(jié)圓直徑 180mm
90mm
55mm
22.5mm
84mm
42mm
3.8本章小結(jié)
本章先是根據(jù)車輛的參數(shù)初選了變速器軸徑,介紹了變速器軸承的選擇原則,計算了傳動比、中心距,按國家標準的規(guī)定選擇了變速器齒輪的參數(shù)。依據(jù)所選擇的參數(shù)首先分配了一檔齒輪的齒數(shù),在此基礎(chǔ)上對中心距進行了修正,以修正后的中心距再分配其他各檔齒輪的齒數(shù),在分配的過程中經(jīng)過反復(fù)的調(diào)整,最終確定了各檔齒輪的齒數(shù)和主要參數(shù),作為變速器齒輪幾何尺寸和齒輪應(yīng)力計算的依據(jù)。
第4章 齒輪的校核
4.1 齒輪的損壞形式
齒輪的損壞形式分三種:輪齒折斷,齒面疲勞剝落,移動換擋齒輪端部破壞。
輪齒折斷分兩種:輪齒受足夠大的沖擊載荷作用,造成輪齒彎曲折斷;輪齒再重復(fù)載荷作用下齒根產(chǎn)生疲勞裂紋,裂紋擴展深度逐漸加大,然后出現(xiàn)彎曲折斷。前者在變速器中出現(xiàn)的很少,后者出現(xiàn)的多。
齒輪工作時,一對相互嚙合,齒面相互擠壓,這時存在齒面細小裂縫中的潤滑油油壓升高,并導(dǎo)致裂縫擴展,然后齒面表層出現(xiàn)塊狀脫落形成齒面點蝕。他使齒形誤差加大,產(chǎn)生動載荷,導(dǎo)致輪齒折斷。
用移動齒輪的方法完成換擋的抵擋和倒擋齒輪,由于換擋時兩個進入嚙合的齒輪存在角速度差,換擋瞬間在齒輪端部產(chǎn)生沖擊載荷,并造成損壞。
4.2計算各軸的轉(zhuǎn)矩
發(fā)動機最大扭矩為353N.m,齒輪傳動效率99%,離合器傳動效率99%,軸承傳動效率96%。
Ι軸 ==353×99%×96%=335.49N.m
中間軸 ==335.49×96%×99%×52/24=690.84N.m
Ⅱ軸 一擋 =690.84×0.96×0.99×44/13=2222.26N.m
二擋 =690.84×0.96×0.99×44/21=1375.68N.m
三擋 =690.84×0.96×0.99×36/29=815.06N.m
四擋 =690.84×0.96×0.99×33/44=492.43N.m
五擋 =335.49×0.96×0.99=318.84N.m
倒擋 =1847.50N.m
4.3 齒輪強度計算
與其他機械行業(yè)相比,不同用途汽車的變速器齒輪使用條間仍是相似的。此外,汽車變速器齒輪用的材料,熱處理方法,加工方法,精度級別,支承方式也基本一致。如汽車變速器齒輪用低碳合金鋼制作,采用剃齒和磨齒精加工 ,齒輪表面采用滲碳淬火熱處理工藝,齒輪精度為JB179—83,6級 和7級。因此,用于計算通用齒輪強度公式更為簡化一些的計算公式來計算汽車齒輪,同樣可以獲得較為準確的結(jié)果。下面介紹的是計算汽車變速器齒輪強度用的簡化計算公式。
4.3.1 倒檔直齒輪彎曲應(yīng)力
圖4.1 齒形系數(shù)圖(假定載荷作用在齒頂,)
直齒齒輪彎曲應(yīng)力 (4.1)
式中:—彎曲應(yīng)力(MPa);
—計算載荷(N.mm);
—應(yīng)力集中系數(shù),可近似取=1.65;—摩擦力影響系數(shù),主、從動齒輪在嚙合點上的摩擦力方向不同,對彎曲應(yīng)力的影響也不同;
主動齒輪=1.1,從動齒輪=0.9;
—齒形系數(shù),如圖4.1。
計算倒擋齒輪11,12,13的彎曲應(yīng)力 ,,
=43,=13,=21,=0.166,=0.142,=0.113,=1847.50N.m,=690.84N.m
=546.45MPa
=965.70MPa
=975.63MPa
4.3.2 斜齒輪彎曲應(yīng)力
(4.2)
式中:—應(yīng)力集中系數(shù),=1.50;
—齒形系數(shù),可按當(dāng)量齒數(shù)在圖中查得;
—齒寬系數(shù)=7.0—重合度影響系數(shù),=2.0。
當(dāng)計算載荷取作用到變速器第一軸上的最大轉(zhuǎn)矩時,對乘用車常嚙合齒輪和高擋齒輪,許用應(yīng)力在180~350MPa范圍,對貨車為100~250MPa。
1、計算一擋齒輪9,10的彎曲應(yīng)力 ,
=44,=13,=0.148,=0.162,=2222.26N.m,=690.84N.m,=19.58°,, =345.70MPa
=332.97MPa
2、計算二擋齒輪7,8的彎曲應(yīng)力
=44,=21,=0.185,=0.108,=1375.68N.m,=690.84N.m,=19.93°,, =204.5MPa
=234.5MPa
3、計算三擋齒輪5,6的彎曲應(yīng)力
=36,=29,=0.182,=0.128,=815.06N.m,=690.84N.m,=19.93°,, =145.6MPa
=186.9MPa
4、計算四擋齒輪3,4的彎曲應(yīng)力
=33,=43,=0.173,=0.154,=656.37N.m,=690.84N.m,=20.21°,, =160.63MPa
=206.82MPa
5、計算常嚙合齒輪1,2的彎曲應(yīng)力
=24,=52,=0.17,=0.15,=335.49N.m,=318.84N.m,=19.58°, , =160.48MPa
=164.13MPa
4.3.3 輪齒接觸應(yīng)力σj
(4.3)
式中:—輪齒的接觸應(yīng)力(MPa);
—齒輪材料的彈性模量(MPa);
、—主、從動齒輪節(jié)點處的曲率半徑(mm),直齒輪、,斜齒輪、;
、—主、從動齒輪節(jié)圓半徑(mm)。將作用在變速器第一軸上的載荷作為計算載荷時,變速器齒輪的許用接觸應(yīng)力見表2.1。彈性模量=20.6×104 N·mm-2
表4.2 變速器齒輪的許用接觸應(yīng)力
齒輪
滲碳齒輪
液體碳氮共滲齒輪
一擋和倒擋
1900~2000
950~1000
常嚙合齒輪和高擋
1300~1400
650~700
1、 計算一擋齒輪9,10的接觸應(yīng)力
=10.63mm
=35.97mm
=1413.05MPa
=379.07MPa
2、計算二擋齒輪7,8的接觸應(yīng)力
=14.76mm
=30.92mm
=1144.51MPa
=1183.18MPa
3、計算三擋齒輪5,6的接觸應(yīng)力
=20.38mm
=25.30mm
=900.82MPa
=946.74MPa
4、計算四擋齒輪3,4的接觸應(yīng)力
=26.32mm
=20.20mm
=1225.47MPa
=900.45MPa
5、常嚙合齒輪1,2的接觸應(yīng)力
=14.34mm
=31.11mm
=897.63MPa
=900.45MPa
6、計算倒擋齒輪11,12,13的接觸應(yīng)力
=8.03mm
=12.78mm
=26.16mm
=1284.21MPa
=1869.72MPa
=1328.35MPa
4.4 本章小結(jié)
本章的主要內(nèi)容是依據(jù)第三章所確定的齒輪的主要參數(shù),計算了其主要幾何尺寸,并在表4.1中表示出來。然后分析了變速器齒輪材料的選擇原則,并介紹了齒輪強度校核的經(jīng)驗公式,說明了公式中各變量的計算方法,根據(jù)前面所確定變速器齒輪的主要參數(shù)和幾何尺寸,按照經(jīng)驗公式校核了齒輪的接觸強度和彎曲強度,通過對各個齒輪的計算和校核,證明變速器齒輪的強度要求合格。
第5章 變速器軸和軸承的設(shè)計計算
5.1初選變速器軸的軸長
變速器在工作時承受著轉(zhuǎn)矩及來自齒輪嚙合的圓周力、徑向力和斜齒輪的軸向力引起的彎矩。剛度不足會引起彎曲變形,破壞齒輪的正確嚙合,產(chǎn)生過大的噪聲,降低齒輪的強度、耐磨性及壽命。設(shè)計變速器軸時,其剛度大小應(yīng)以能保證齒輪能有正確的嚙合為前提條件。軸的徑向及軸向尺寸對其剛度影響很大,且軸長與軸徑應(yīng)協(xié)調(diào)。
變速器的最大直徑和支承間的距離可按下列關(guān)系初選:
中間軸 (5.1)
d=300~337.5mm,故中間軸可初選為300mm。
第二軸 (5.2)
257.14~300mm,故第二軸的長度可初選為257mm。
初選的軸徑還需根據(jù)變速器的結(jié)構(gòu)布置和軸承與花鍵、彈性檔圈等標準以及軸的剛度和強度驗算結(jié)果進行修正。
5.2 軸的結(jié)構(gòu)設(shè)計
如圖5.1所示,根據(jù)軸的受力,取第一軸裝軸承處的直徑為50mm,第二軸裝軸承處的直徑為40mm,中間軸裝軸承處的直徑為40mm;1mm,mm,mm,mm,mm,mm,mm。
圖5.1 齒輪和軸上的受力簡圖
5.3 變速器軸的強度計算
5.3.1齒輪和軸上的受力計算
根據(jù)受力簡圖5.1,可計算出變速器的齒輪和軸上的作用力。
第一軸
8780.16N
3391.79N
3123.02N
中間軸
8344.99N
3223.74N
2968.23N
25034.97N
9671.23N
8904.71N
第二軸
23818.43N
9201.27N
8472.00N
5.3.2 軸的強度計算
在進行軸的強度和剛度驗算時,欲求三軸式變速器第一軸的支承反力,必須先求出第二軸的支承反力。應(yīng)當(dāng)對每個檔位下的軸的剛度和強度都進行驗算,因為檔位不同不僅齒輪的圓周力、徑向力和軸向力不同,而且著力點也有變化。驗算時可將軸看作是鉸接支承的梁,第一軸的計算轉(zhuǎn)矩為發(fā)動機的最大轉(zhuǎn)矩。
1、求第二軸支反力
(1)在垂直平面內(nèi)的支反力
由得
則
=6821.10N
由得
=5771.96N
(2)在水平面內(nèi)的支反力
由得
則
= -1084.24N
而
=16122.51N
2、求第一軸支反力
則
=6821.1N
=1084.24N
3、求中間軸的支反力
(1)在水平面內(nèi)的支反力
=200.26N
而
=16890.25N
(2)在垂直平面內(nèi)的支反力
=503